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In Chapter 6, we developed the basic ideas of game theory, in which individual players

make decisions, and the payo⇥ to each player depends on the decisions made by all. As we

saw there, a key question in game theory is to reason about the behavior we should expect

to see when players take part in a given game.

The discussion in Chapter 6 was based on considering how players simultaneously reason

about what the other players may do. In this chapter, on the other hand, we explore the

notion of evolutionary game theory, which shows that the basic ideas of game theory can be

applied even to situations in which no individual is overtly reasoning, or even making explicit

decisions. Rather, game-theoretic analysis will be applied to settings in which individuals can

exhibit di⇥erent forms of behavior (including those that may not be the result of conscious

choices), and we will consider which forms of behavior have the ability to persist in the

population, and which forms of behavior have a tendency to be driven out by others.

As its name suggests, this approach has been applied most widely in the area of evolu-

tionary biology, the domain in which the idea was first articulated by John Maynard Smith

and G. R. Price [375, 376]. Evolutionary biology is based on the idea that an organism’s

genes largely determine its observable characteristics, and hence its fitness in a given envi-

ronment. Organisms that are more fit will tend to produce more o⇥spring, causing genes

that provide greater fitness to increase their representation in the population. In this way,

fitter genes tend to win over time, because they provide higher rates of reproduction.

The key insight of evolutionary game theory is that many behaviors involve the interaction

of multiple organisms in a population, and the success of any one of these organisms depends

on how its behavior interacts with that of others. So the fitness of an individual organism

can’t be measured in isolation; rather it has to be evaluated in the context of the full

population in which it lives. This opens the door to a natural game-theoretic analogy:
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an organism’s genetically-determined characteristics and behaviors are like its strategy in a

game, its fitness is like its payo⇥, and this payo⇥ depends on the strategies (characteristics) of

the organisms with which it interacts. Written this way, it is hard to tell in advance whether

this will turn out to be a superficial analogy or a deep one, but in fact the connections turn

out to run very deeply: game-theoretic ideas like equilibrium will prove to be a useful way

to make predictions about the results of evolution on a population.

7.1 Fitness as a Result of Interaction

To make this concrete, we now describe a first simple example of how game-theoretic ideas

can be applied in evolutionary settings. This example will be designed for ease of explanation

rather than perfect fidelity to the underlying biology; but after this we will discuss examples

where the phenomenon at the heart of the example has been empirically observed in a variety

of natural settings.

For the example, let’s consider a particular species of beetle, and suppose that each

beetle’s fitness in a given environment is determined largely by the extent to which it can

find food and use the nutrients from the food e⇥ectively. Now, suppose a particular mutation

is introduced into the population, causing beetles with the mutation to grow a significantly

larger body size. Thus, we now have two distinct kinds of beetles in the population — small

ones and large ones. It is actually di⇧cult for the large beetles to maintain the metabolic

requirements of their larger body size — it requires diverting more nutrients from the food

they eat — and so this has a negative e⇥ect on fitness.

If this were the full story, we’d conclude that the large-body-size mutation is fitness-

decreasing, and so it will likely be driven out of the population over time, through multiple

generations. But in fact, there’s more to the story, as we’ll now see.

Interaction Among Organisms. The beetles in this population compete with each other

for food – when they come upon a food source, there’s crowding among the beetles as they

each try to get as much of the food as they can. And, not surprisingly, the beetles with large

body sizes are more e⇥ective at claiming an above-average share of the food.

Let’s assume for simplicity that food competition in this population involves two beetles

interacting with each other at any given point in time. (This will make the ideas easier

to describe, but the principles we develop can also be applied to interactions among many

individuals simultaneously.) When two beetles compete for some food, we have the following

possible outcomes.

• When beetles of the same size compete, they get equal shares of the food.

• When a large beetle competes with a small beetle, the large beetle gets the majority

of the food.
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• In all cases, large beetles experience less of a fitness benefit from a given quantity of

food, since some of it is diverted into maintaining their expensive metabolism.

Thus, the fitness that each beetle gets from a given food-related interaction can be

thought of as a numerical payo⇥ in a two-player game between a first beetle and a second

beetle, as follows. The first beetle plays one of the two strategies Small or Large, depending

on its body size, and the second beetle plays one of these two strategies as well. Based on

the two strategies used, the payo⇥s to the beetles are described by Figure 7.1.

Beetle 1

Beetle 2

Small Large
Small 5, 5 1, 8
Large 8, 1 3, 3

Figure 7.1: The Body-Size Game

Notice how the numerical payo⇥s satisfy the principles just outlined: when two small

beetles meet, they share the fitness from the food source equally; large beetles do well at

the expense of small beetles; but large beetles cannot extract the full amount of fitness from

the food source. (In this payo⇥ matrix, the reduced fitness when two large beetles meet is

particularly pronounced, since a large beetle has to expend extra energy in competing with

another large beetle.)

This payo⇥ matrix is a nice way to summarize what happens when two beetles meet,

but compared with the game in Chapter 6, there’s something fundamentally di⇥erent in

what’s being described here. The beetles in this game aren’t asking themselves, “What do

I want my body size to be in this interaction?” Rather, each is genetically hard-wired to

play one of these two strategies through its whole lifetime. Given this important di⇥erence,

the idea of choosing strategies — which was central to our formulation of game theory —

is missing from the biological side of the analogy. As a result, in place of the idea of Nash

equilibrium — which was based fundamentally on the relative benefit of changing one’s own

personal strategy — we will need to think about strategy changes that operate over longer

time scales, taking place as shifts in a population under evolutionary forces. We develop the

fundamental definitions for this in the next section.

7.2 Evolutionarily Stable Strategies

In Chapter 6, the notion of Nash equilibrium was central in reasoning about the outcome

of a game. In a Nash equilibrium for a two-player game, neither player has an incentive to

deviate from the strategy they are currently using — the equilibrium is a choice of strategies

that tends to persist once the players are using it. The analogous notion for evolutionary
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settings will be that of an evolutionarily stable strategy — a genetically-determined strategy

that tends to persist once it is prevalent in a population.

We formulate this as follows. Suppose, in our example, that each beetles is repeatedly

paired o⇥ with other beetles in food competitions over the course of its lifetime. We will

assume the population is large enough that no two particular beetles have a significant

probability of interacting with each other repeatedly. A beetle’s overall fitness will be equal

to the average fitness it experiences from each of its many pairwise interactions with others,

and this overall fitness determines its reproductive success — the number of o⇥spring that

carry its genes (and hence its strategy) into the next generation.

In this setting, we say that a given strategy is evolutionarily stable if, when the whole

population is using this strategy, any small group of invaders using a di⇥erent strategy

will eventually die o⇥ over multiple generations. (We can think of these invaders either

as migrants who move to join the population, or as mutants who were born with the new

behavior directly into the population.) We capture this idea in terms of numerical payo⇥s

by saying that when the whole population is using a strategy S, then a small group of

invaders using any alternate strategy T should have strictly lower fitness than the users

of the majority strategy S. Since fitness translates into reproductive success, evolutionary

principles posit that strictly lower fitness is the condition that causes a sub-population (like

the users of strategy T ) to shrink over time, through multiple generations, and eventually

die o⇥ with high probability.

More formally, we will phrase the basic definitions as follows.

• We say the fitness of an organism in a population is the expected payo⇥ it receives

from an interaction with a random member of the population.

• We say that a strategy T invades a strategy S at level x, for some small positive

number x, if an x fraction of the underlying population uses T and a 1� x fraction of

the underlying population uses S.

• Finally, we say that a strategy S is evolutionarily stable if there is a (small) positive

number y such that when any other strategy T invades S at any level x < y, the fitness

of an organism playing S is strictly greater than the fitness of an organism playing T .

Evolutionarily Stable Strategies in our First Example. Let’s see what happens when

we apply this definition to our example involving beetles competing for food. We will first

check whether the strategy Small is evolutionarily stable, and then we will do the same for

the strategy Large.

Following the definition, let’s suppose that for some small positive number x, a 1 � x

fraction of the population uses Small and an x fraction of the population uses Large. (This
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is what the picture would look like just after a small invader population of large beetles

arrives.)

• What is the expected payo⇥ to a small beetle in a random interaction in this popula-

tion? With probability 1 � x, it meets another small beetle, receiving a payo⇥ of 5,

while with probability x, it meets a large beetle, receiving a payo⇥ of 1. Therefore its

expected payo⇥ is

5(1� x) + 1 · x = 5� 4x.

• What is the expected payo⇥ to a large beetle in a random interaction in this population?

With probability 1 � x, it meets a small beetle, receiving a payo⇥ of 8, while with

probability x, it meets another large beetle, receiving a payo⇥ of 3. Therefore its

expected payo⇥ is

8(1� x) + 3 · x = 8� 5x.

It’s easy to check that for small enough values of x (and even for reasonably large ones

in this case), the expected fitness of large beetles in this population exceeds the expected

fitness of small beetles. Therefore Small is not evolutionarily stable.

Now let’s check whether Large is evolutionarily stable. For this, we suppose that for some

very small positive number x, a 1�x fraction of the population uses Large and an x fraction

of the population uses Small.

• What is the expected payo⇥ to a large beetle in a random interaction in this population?

With probability 1�x, it meets another large beetle, receiving a payo⇥ of 3, while with

probability x, it meets a small beetle, receiving a payo⇥ of 8. Therefore its expected

payo⇥ is

3(1� x) + 8 · x = 3 + 5x.

• What is the expected payo⇥ to a small beetle in a random interaction in this popu-

lation? With probability 1 � x, it meets a large beetle, receiving a payo⇥ of 1, while

with probability x, it meets another small beetle, receiving a payo⇥ of 5. Therefore its

expected payo⇥ is

(1� x) + 5 · x = 1 + 4x.

In this case, the expected fitness of large beetles in this population exceeds the expected

fitness of small beetles, and so Large is evolutionarily stable.
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Interpreting the Evolutionarily Stable Strategy in our Example. Intuitively, this

analysis can be summarized by saying that if a few large beetles are introduced into a

population consisting of small beetles, then the large beetles do extremely well — since

they rarely meet each other, they get most of the food in almost every competition they

experience. As a result, the population of small beetles cannot drive out the large ones, and

so Small is not evolutionarily stable.

On the other hand, in a population of large beetles, a few small beetles will do very badly,

losing almost every competition for food. As a result, the population of large beetles resists

the invasion of small beetles, and so Large is evolutionarily stable.

Therefore, if we know that the large-body-size mutation is possible, we should expect to

see populations of large beetles in the wild, rather than populations of small ones. In this

way, our notion of evolutionary stability has predicted a strategy for the population — as we

predicted outcomes for games among rational players in Chapter 6, but by di⇥erent means.

What’s striking about this particular predicted outcome, though, is the fact that the

fitness of each organism in a population of small beetles is 5, which is larger than the fitness

of each organism in a population of large beetles. In fact, the game between small and large

beetles has precisely the structure of a Prisoner’s Dilemma game; the motivating scenario

based on competition for food makes it clear that the beetles are engaged in an arms race,

like the game from Chapter 6 in which two competing athletes need to decide whether to use

performance-enhancing drugs. There it was a dominant strategy to use drugs, even though

both athletes understand that they are better o⇥ in an outcome where neither of them uses

drugs — it’s simply that this mutually better joint outcome is not sustainable. In the present

case, the beetles individually don’t understand anything, nor could they change their body

sizes even if they wanted to. Nevertheless, evolutionary forces over multiple generations are

achieving a completely analogous e⇥ect, as the large beetles benefit at the expense of the

small ones. Later in this chapter, we will see that this similarity in the conclusions of two

di⇥erent styles of analysis is in fact part of a broader principle.

Here is a di⇥erent way to summarize the striking feature of our example: Starting from

a population of small beetles, evolution by natural selection is causing the fitness of the

organisms to decrease over time. This might seem troubling initially, since we think of

natural selection as being fitness-increasing. But in fact, it’s not hard to reconcile what’s

happening with this general principle of natural selection. Natural selection increases the

fitness of individual organisms in a fixed environment — if the environment changes to

become more hostile to the organisms, then clearly this could cause their fitness to go down.

This is what is happening to the population of beetles. Each beetle’s environment includes

all the other beetles, since these other beetles determine its success in food competitions;

therefore the increasing fraction of large beetles can be viewed, in a sense, as a shift to an

environment that is more hostile for everyone.
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Empirical Evidence for Evolutionary Arms Races. Biologists have o⇥ered recent evi-

dence for the presence of evolutionary games in nature with the Prisoner’s-Dilemma structure

we’ve just seen. It is very di⇧cult to truly determine payo⇥s in any real-world setting, and so

all of these studies are the subject of ongoing investigation and debate. For our purposes in

this discussion, they are perhaps most usefully phrased as deliberately streamlined examples,

illustrating how game-theoretic reasoning can help provide qualitative insight into di⇥erent

forms of biological interaction.

It has been argued that the heights of trees can obey Prisoner’s-Dilemma payo⇥s [156,

226]. If two neighboring trees both grow short, then they share the sunlight equally. They

also share the sunlight equally if they both grow tall, but in this case their payo⇥s are each

lower because they have to invest a lot of resources in achieving the additional height. The

trouble is that if one tree is short while its neighbor is tall, then the tall tree gets most of

the sunlight. As a result, we can easily end up with payo⇥s just like the Body-Size Game

among beetles, with the trees’ evolutionary strategies Short and Tall serving as analogues to

the beetles’ strategies Small and Large. Of course, the real situation is more complex than

this, since genetic variation among trees can lead to a wide range of di⇥erent heights and

hence a range of di⇥erent strategies (rather than just two strategies labeled Short and Tall).

Within this continuum, Prisoner’s-Dilemma payo⇥s can only apply to a certain range of tree

heights: there is some height beyond which further height-increasing mutations no longer

provide the same payo⇥ structure, because the additional sunlight is more than o⇥set by the

fitness downside of sustaining an enormous height.

Similar kinds of competition take place in the root systems of plants [181]. Suppose you

grow two soybean plants at opposite ends of a large pot of soil; then their root systems

will each fill out the available soil and intermingle with each other as they try to claim as

many resources as they can. In doing so, they divide the resources in the soil equally. Now,

suppose that instead you partition the same quantity of soil using a wall down the middle, so

that the two plants are on opposite sides of the wall. Then each still gets half the resources

present in the soil, but each invests less of its energy in producing roots and consequently

has greater reproductive success through seed production.

This observation has implications for the following simplified evolutionary game involving

root systems. Imagine that instead of a wall, we had two kinds of root-development strategies

available to soybean plants: Conserve, where a plant’s roots only grow into its own share of

the soil, and Explore, where the roots grow everywhere they can reach. Then we again have

the scenario and payo⇥s from the Body-Size Game, with the same conclusion: all plants are

better o⇥ in a population where everyone plays Conserve, but only Explore is evolutionarily

stable.

As a third example, there was recent excitement over the discovery that virus populations

can also play an evolutionary version of the Prisoner’s Dilemma [326, 392]. Turner and Chao
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studied a virus called Phage �6, which infects bacteria and manufactures products needed

for its own replication. A mutational variant of this virus called Phage �H2 is also able to

replicate in bacterial hosts, though less e⇥ectively on its own. However, �H2 is able to take

advantage of chemical products produced by �6, which gives �H2 a fitness advantage when

it is in the presence of �6. This turns out to yield the structure of the Prisoner’s Dilemma:

viruses have the two evolutionary strategies �6 and �H2; viruses in a pure �6 population all

do better than viruses in a pure �H2 population; and regardless of what the other viruses are

doing, you (as a virus) are better o⇥ playing �H2. Thus only �H2 is evolutionarily stable.

The virus system under study was so simple that Turner and Chao were able to infer an

actual payo⇥ matrix based on measuring the relative rates at which the two viral variants

were able to replicate under di⇥erent conditions. Using an estimation procedure derived

from these measurements, they obtained the payo⇥s in Figure 7.2. The payo⇥s are re-scaled

so that the upper-left box has the value 1.00, 1.00.1

Virus 1

Virus 2

�6 �H2

�6 1.00, 1.00 0.65, 1.99

�H2 1.99, 0.65 0.83, 0.83

Figure 7.2: The Virus Game

Whereas our earlier examples had an underlying story very much like the use of performance-

enhancing drugs, this game among phages is actually reminiscent of a di⇥erent story that

also motivates the Prisoner’s Dilemma payo⇥ structure: the scenario behind the Exam-or-

Presentation game with which we began Chapter 6. There, two college students would both

be better o⇥ if they jointly prepared for a presentation, but the payo⇥s led them to each think

selfishly and study for an exam instead. What the Virus Game here shows is that shirking

a shared responsibility isn’t just something that rational decision-makers do; evolutionary

forces can induce viruses to play this strategy as well.

7.3 A General Description of Evolutionarily Stable Strate-
gies

The connections between evolutionary games and games played by rational participants are

suggestive enough that it makes sense to understand how the relationship works in general.

We will focus here, as we have thus far, on two-player two-strategy games. We will also

1It should be noted that even in a system this simple, there are many other biological factors at work,
and hence this payo⇥ matrix is still just an approximation to the performance of �6 and �H2 populations
under real experimental and natural conditions. Other factors appear to a⇥ect these populations, including
the density of the population and the potential presence of additional mutant forms of the virus [393].


