
BODY SIZE RELATIONSHIPS: SCALING AND ALLOMETRY

Animals undergo interrelated changes in size and shape on both de-
velopmental and evolutionary time scales. For example, the dramatic size
changes from fetal development through adolescence occurs on a developmental
time scale. Many evolutionary lineages also show a pronounced size increase
through time, with early species being considerably smaller than later species
(Cope’s Rule). Accompanying these size changes are significant modifications of
shape. These shape changes occur because specific body plans are not infinitely
expandable; the physical constraints on body form are known to vary with size.

The fundamental problem faced by all organisms is called surface area -
volume paradox, where the ratio between surface area and volume does not
increase linearly (1:1). For example, consider two cubes, A = 1 cm on each side
and B = 3 cm on each side. If L = length of a side, then the surface area L2

(= squared, or L2, function) and volume L3 (= cubic, or L3 function).
Consequently, cube B has 9 times the surface area and 27 times the volume
of cube A. This creates severe problems at larger sizes, since nutrients and
oxygen are consumed and waste and CO2 are produced at rates proportional to
volume (i.e., they are cubic functions), while exchange rates at body surfaces
are proportional to surface area and are squared functions. In all systems there
occurs a critical size above which squared functions can not keep up with cubic
functions.

The mathematical basis for analyzing the scaling relationships within
organisms is described mathematically as:

y=axb

or, alternatively

log y=log a+b(log x)

where: a is the y-intercept and b is the slope

If the slope (b) is equal to 1, then the variables x and y exhibit equal
proportional changes, and demonstrate isometry. In isometric relationships
shape does not change as size increases. Instead, organisms exhibit geometric
similarity for the variables being studied.

However, most variables in organisms do not scale isometrically. Instead, they
have unequal proportional changes, that can take a variety of forms:

• independence (b = 0);
• positive allometry (b > 1);
• negative allometry (0 < b < 1);
• inverse allometry (b < 0).

All allometric relationships are manifested as size-related changes in shape, which
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are necessary to maintain functional efficiency. Consequently, shape differences
between animals of unequal sizes must be evaluated very carefully when making
paleobiological reconstructions.

Because allometric relationships are a power function (i.e., they have an
exponent) they form a curved line when graphed on arithmetic axes (Figure 1 & 2).
Since curved lines are relatively difficult to evaluate, allometric relationships are
typically either graphed on logarithmic scales (Figure 3 & 4) or log-transformed
values are plotted on arithmetic scales (Figure 5 & 6). Note that logarithmic
scaling and log-transformed data give identical plots. We will work with base 10
log-transformed data in this course, because it simplifies calculations for data
sets that cover huge size ranges. Unfortunately, humans do not have an easy
familiarity with logarithms. Stating that the logarithm of the estimated body
mass of the tyrannosaurid theropods Tyrannosaurus rex (in kg) is 3.756, while
that of Tarbosaurus bataar is 3.322 means very little. But by converting back to
actual masses (T. rex = 103.756 and T. bataar = 103.322) we obtain 5700 and
2100 kg, respectively.

There are several important points to remember when working with log-
transformed data. First, as illustrated by the tyrannosaurid data, even a small
difference in logarithm values can reflect a very large difference in arithmetic
values. Second, arithmetic plots which look superficially similar, may have very
different equations. For example, the arithmetic plots in Figure 1 (a & d) look
superficially similar, but have different causes. Figure 1 has the value of b
held constant, while the value of a varies (y = 2x2 and y = x2). Figure 2 has
the converse, the value of a is held constant, while the value of b varies (y =
x2.0 and y = x1.9). Finally, a and b have different effects on log-scaled and
log-transformed data. Changing the value of a (Figures 3 & 5) produces parallel
lines with identical slopes, but different origins. This is not unexpected, since
a is the y-intercept value. Changing the values of b (Figure 4 & 6) produces
nonparallel lines with the same origin. Again, this is expected, since b represents
the slope.

The purpose of this laboratory is to familiarize you with the analysis of
allometric relationships. You will be performing two analyses in this exercise.
The first analysis is simply to familiarize you with the techniques for analyzing
shape data and uses data from common carpentry nails. The second analysis
concerns the relationship between body length and body mass in theropod
dinosaurs.

Scaling in Carpentry Nails

Common sense would suggest that carpentry nails should exhibit simple
isometry; a nail that is twice as long as second one, should also have twice the
diameter. But is this actually the case?

Carpentry nails ranging in size from three penny common (abbreviated 3D)
to thirty penny common (30D) are available in the laboratory for analysis. Using
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calipers, measure the length and mid-shaft diameter in millimeters
for one nail of each size and record your data in a spreadsheet for
analysis. As with most allometric analyses, the data will need to be
log-transformed before it is graphed. Once the data has been entered
and analyzed, plot a graph of log LENGTH vs. log DIAMETER.

Scaling of Theropod Body Length and Body Mass

In the second portion of this exercise, you will be evaluating the relationship
between body length and body mass for theropod dinosaurs. Data has been
provided from published information for all theropod species for which reasonable
accurate length and mass estimates are available (data from G. S. Paul. 1988.
Predatory dinosaurs of the world. A complete illustrated guide. Simon and
Schuster, New York, NY, 464 pp.). NOTE: Paul used an idiosyncratic system of
taxonomic nomenclature for his book. Standard taxon names, as of 2007, are
provided below along with Paul’s 1988 names.

• Plot a graph for log LENGTH vs. log MASS.
• Obtain a regression equation for the log transformed data.

Table. Estimated body length and body mass for theropod dinosaurs
known from relatively complete skeletons.

Dinosaur Species Body
Length
(m)

Body Mass
(kg)

Staurikosaurus pricei 2.08 19.0
Coelophysis bauri 2.68 15.3
Coelophysis rhodesiensis 2.15 13.0
Elaphrosaurus bambergi 6.2 210
Liliensternus liliensterni 5.15 127
Dilophosaurus wetherilli 6.03 283
Ceratosaurus nasicoris 5.69 524
Eustreptospondylus oxoniensis 4.63 218
Metriacanthosaurus? sp. 3.8 130
Allosaurus fragilis 7.4 1010
Allosaurus atrox 7.9 1320
Gorgosaurus libratus 5.8 700
Gorgosaurus libratus 8.6 2500
Daspletosaurus torosus 9.0 2300
Tarbosaurus bataar 5.8 760
Tarbosaurus bataar 7.7 2100
Tyrannosaurus rex 10.6 5700
Deinonychus antirrhopus 3.06 45
Deinonychus antirrhopus 3.43 73
Velociraptor mongoliensis 2.07 15
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Ornithomimus edmontonicus 3.3 110
Ornithomimus brevitertius
(=edmontonicus)

3.66 144

Gallimimus bullatus 2.15 27
Gallimimus bullatus 6.0 440

Questions

1) Do nails exhibit isometry?

2) Why might nails change shape with increasing size?

3) The relationship between body length and body mass in theropods
correlates a linear measurement (= length) with a cubic measurement (=
mass). Theoretically, what would you predict as the value for b?

4) Does your value of b deviate from this prediction, and if so, why?

Figure 1: Effect of a on an allometric plot (arithmetic scale).
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Figure 2: Effect of b on an allometric plot (arithmetic scale).

Figure 3: Effect of a on an allometric plot (logarithmic scale).
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Figure 4: Effect of b on an allometric plot (logarithmic scale).

Figure 5: Effect of log-transformed a on an allometric plot (arithmetic scale).
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Figure 6: Effect of log-transformed b on an allometric plot (arithmetic scale).
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