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BIFURCATIONS

3.0 Introduction

As we’ve seen in Chapter 2, the dynamics of vector fields on the line is very limited:
all solutions either settle down to equilibrium or head out to *eo. Given the triviality
of the dynamics, what’s interesting about one-dimensional systems? Answer: De-
pendence on parameters. The qualitative structure of the flow can change as parame-
ters are varied. In particular, fixed points can be created or destroyed, or their
stability can change. These qualitative changes in the dynamics are called bifurca-
tions, and the parameter values at which they occur are called bifurcation points.

Bifurcations are important scientifically—they provide models of transitions
and instabilities as some control parameter is varied. For example, consider the
buckling of a beam. If a small weight is placed on top of the beam in Figure 3.0.1,
the beam can support the load and remain vertical. But if the load is too heavy, the
vertical position becomes unstable, and the beam may buckle.

beam "buckles"

beam

L7777

Figure 3.0.1

Here the weight plays the role of the control parameter, and the deflection of the
beam from vertical plays the role of the dynamical variable x.
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One of the main goals of this book is to help you develop a solid and practical
understanding of bifurcations. This chapter introduces the simplest examples: bi-
furcations of fixed points for flows on the line. We’ll use these bifurcations to
model such dramatic phenomena as the onset of coherent radiation in a laser and
the outbreak of an insect population. (In later chapters, when we step up to two-
and three-dimensional phase spaces, we’ll explore additional types of bifurcations
and their scientific applications.)

We begin with the most fundamental bifurcation of all.

3.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are cre-
ated and destroyed. As a parameter is varied, two fixed points move toward each
other, collide, and mutually annihilate.

The prototypical example of a saddle-node bifurcation is given by the first-
order system

x=r+x’ (1)

where r is a parameter, which may be positive, negative, or zero. When r is nega-
tive, there are two fixed points, one stable and one unstable (Figure 3.1.1a).

x X x
x x _— e x
(a) r<0 ) r=0 (c) r>0
Figure 3.1.1

As r approaches 0 from below, the parabola moves up and the two fixed points move
toward each other. When r = 0, the fixed points coalesce into a half-stable fixed point
at x* =0 (Figure 3.1.1b). This type of fixed point is extremely delicate—it vanishes
as soon as r > 0, and now there are no fixed points at all (Figure 3.1.1c).

In this example, we say that a bifurcation occurred at r =0, since the vector
fields for r <0 and r >0 are qualitatively different.

Graphical Conventions

There are several other ways to depict a saddle-node bifurcation. We can show a
stack of vector fields for discrete values of r (Figure 3.1.2).
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> > This representation emphasizes the de-
pendence of the fixed points on r. In
the limit of a continuous stack of vector
fields, we have a picture like Figure
3.1.3. The curve shown is r = —x?, i.e.,
x =0, which gives the fixed points for
— > @& <« O different r. To distinguish between
\ stable and unstable fixed points, we use
a solid line for stable points and a bro-
Figure 3.1.2 ken line for unstable ones.

However, the most common way to
depict the bifurcation is to invert the axes of Figure 3.1.3. The rationale is that r
plays the role of an independent variable, and so should be plotted horizontally
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Figure 3.1.3

(Figure 3.1.4). The drawback is that now the x-axis has to be plotted vertically,
which looks strange at first. Arrows are sometimes included in the picture, but not
always. This picture is called the
bifurcation diagram for the saddle-

unstable - . _ ; : node bifurcation.

| Terminology

r Bifurcation theory is rife with
conflicting terminology. The sub-
ject really hasn’t settled down yet,
and different people use different
words for the same thing. For ex-
ample, the saddle-node bifurcation

stable -

Figure 3.1.4
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is sometimes called a fold bifurcation (because the curve in Figure 3.1.4 has a
fold in it) or a turning-point bifurcation (because the point (x,r)=(0,0) is a
“turning point.”) Admittedly, the term saddle-node doesn’t make much sense for
vector fields on the line. The name derives from a completely analogous bifurca-
tion seen in a higher-dimensional context, such as vector fields on the plane,
where fixed points known as saddles and nodes can collide and annihilate (see
Section 8.1).

The prize for most inventive terminology must go to Abraham and Shaw
(1988), who write of a blue sky bifurcation. This term comes from viewing a
saddle-node bifurcation in the other direction: a pair of fixed points appears
“out of the clear blue sky” as a parameter is varied. For example, the vector
field

X=r—x (2)

has no fixed points for r < 0, but then one materializes when » = 0 and splits into
two when >0 (Figure 3.1.5). Incidentally, this example also explains why we
use the word “bifurcation”: it means “splitting into two branches.”

_— - ———()———-——— —— O ——
x X x

r<0 r=0 r>0

Figure 3.1.5

EXAMPLE 3.1.1:

Give a linear stability analysis of the fixed points in Figure 3.1.5.

Solution: The fixed points for x = f(x)=r - x” are given by x* = ++/r. There
are two fixed points for r 2 0, and none for < 0. To determine linear stability, we
compute f’(x*)=-2x* Thus x*=++/r is stable, since f'(x*)<0. Similarly
x*=—+/r is unstable. At the bifurcation point r =0, we find f’(x*) = 0; the lin-
earization vanishes when the fixed points coalesce. m

EXAMPLE 3.1.2:

Show that the first-order system x = r —x —e™ " undergoes a saddle-node bifur-
cation as r is varied, and find the value of r at the bifurcation point.

Solution: The fixed points satisfy f(x)=r—x—e ¥ =0. But now we run into
a difficulty—in contrast to Example 3.1.1, we can’t find the fixed points explic-
itly as a function of r. Instead we adopt a geometric approach. One method
would be to graph the function f(x)=r—x—e™" for different values of r, look

for its roots x *, and then sketch the vector field on the x-axis. This method is
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fine, but there’s an easier way. The point is that the two functions r—x and e~
have much more familiar graphs than their difference r—x—e¢ . So we plot
r—x and e on the same picture (Figure 3.1.6a). Where the line r—x
intersects the curve e¢™*, we have r—x=¢ " and so f(x)=0. Thus, intersec-
tions of the line and the curve correspond to fixed points for the system. This
picture also allows us to read off the direction of flow on the x-axis: the flow is
to the right where the line lies above the curve, since r—x >e " and therefore
x >0 . Hence, the fixed point on the right is stable, and the one on the left is un-
stable.

Now imagine we start decreasing the parameter r. The line » — x slides down
and the fixed points approach each other. At some critical value r = r, , the line be-
comes tangent to the curve and the fixed points coalesce in a saddle-node bifurca-
tion (Figure 3.1.6b). For r below this critical value, the line lies below the curve
and there are no fixed points (Figure 3.1.6¢).

—— O —— - ——————————— x S S, S———

@ ®) ©

Figure 3.1.6

To find the bifurcation point r,, we impose the condition that the graphs of
r—x and e intersect fangentially. Thus we demand equality of the functions and
their derivatives:

e =r—x
and
Lot =4 (f - x).
The second equation implies —e " =—1, so x =0. Then the first equation yields
r =1. Hence the bifurcation point is r. =1, and the bifurcation occurs at x=0.m
Normal Forms

In a certain sense, the examples x =r—x” or x =r+x’ are representative of
all saddle-node bifurcations; that’s why we called them “prototypical.” The idea is
that, close to a saddle-node bifurcation, the dynamics typically look like x = 7 — x°

: 2
orx=r+x".
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For instance, consider Example 3.1.2 near the bifurcation at x=0 and r=1.
Using the Taylor expansion for e™* about x =0, we find

X

X=r—x—e

=r—x—|l-x+=—+--
2!

2

X
=(r-1)—2—+
(r—=1 5

to leading order in x. This has the same algebraic form as x = — x°, and can be
made to agree exactly by appropriate rescalings of x and r.

It’s easy to understand why saddle-node bifurcations typically have this alge-
braic form. We just ask ourselves: how can two fixed points of x = f(x) collide and
disappear as a parameter r is varied? Graphically, fixed points occur where the
graph of f(x) intersects the x-axis. For a saddle-node bifurcation to be possible, we
need two nearby roots of f(x); this means f(x) must look locally “bowl-shaped” or
parabolic (Figure 3.1.7).

X
________ r>r,
f()/‘\\ I/WC
/ : \./ : x
fx) looks

parabolic in here
Figure 3.1.7

Now we use a microscope to zoom in on the behavior near the bifurcation. As r
varies, we see a parabola intersecting the x-axis, then becoming tangent to it, and
then failing to intersect. This is exactly the scenario in the prototypical Figure 3.1.1.

Here’s a more algebraic version of the same argument. We regard f as a func-
tion of both x and r, and examine the behavior of x = f(x,r) near the bifurcation

at x=x* and r =r, . Taylor’s expansion yields

x= f(x,r)
) J 0°
_-i _'i +%(x_x*)za_x]: + ..

(x*r.) (x*,7.)

= fOx* )+ (x—x%) +(r—r.)

(x*,r.)
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where we have neglected quadratic terms in (r — r.) and cubic terms in (x — x*). Two
of the terms in this equation vanish: f(x*,r.)=0 since x* is a fixed point, and

of [ox

= 0 by the tangency condition of a saddle-node bifurcation. Thus

(x*,r.)

x=a(r—r)+b(x—x*)*+-- (3)

where a = 3f/‘9r(,x*,r.)

our prototypical examples. (We are assuming that a,b # 0, which is the typical case;

and b =49 f/ox* lm Ly Equation (3) agrees with the form of

for instance, it would be a very special situation if the second derivative 9> f/dx*
also happened to vanish at the fixed point.)

What we have been calling prototypical examples are more conventionally
known as normal forms for the saddle-node bifurcation. There is much, much
more to normal forms than we have indicated here. We will be seeing their impor-
tance throughout this book. For a more detailed and precise discussion, see Guck-
enheimer and Holmes (1983) or Wiggins (1990).

3.2 Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values
of a parameter and can never be destroyed. For example, in the logistic equation
and other simple models for the growth of a single species, there is a fixed point at
zero population, regardless of the value of the growth rate. However, such a fixed
point may change its stability as the parameter is varied. The transcritical bifurca-
tion is the standard mechanism for such changes in stability.

The normal form for a transcritical bifurcation is

X=rx—x". (1)

This looks like the logistic equation of Section 2.3, but now we allow x and r to
be either positive or negative.

Figure 3.2.1 shows the vector field as r varies. Note that there is a fixed point at
x*=0 for all values of r,

X X X
R—o——x V x —_—lt x
(@ r<0 (b) r=0 ) r>0

Figure 3.2.1
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For r <0, there is an unstable fixed point at x* =r and a stable fixed point at
x*=0. As r increases, the unstable fixed point approaches the origin, and coa-
lesces with it when r=0. Finally, when r >0, the origin has become unstable,
and x*=r is now stable. Some people say that an exchange of stabilities has
taken place between the two fixed points.

Please note the important difference between the saddle-node and transcritical
bifurcations: in the transcritical case, the two fixed points don’t disappear after the
bifurcation—instead they just switch their stability. -

Figure 3.2.2 shows the bifurcation diagram for the transcritical bifurcation. As
in Figure 3.1.4, the parameter r is regarded as the independent variable, and the
fixed points x* =0 and x* = r are shown as dependent variables.

X stable

stable -t = - - unstable

unstable ’

Figure 3.2.2

EXAMPLE 3.2.1:

Show that the first-order system x = x(1— xY—a(l—e ™) undergoes a trans-
critical bifurcation at x =0 when the parameters a, b satisfy a certain equation, to
be determined. (This equation defines a bifurcation curve in the (a,b) parameter
space.) Then find an approximate formula for the fixed point that bifurcates from
x =0, assuming that the parameters are close to the bifurcation curve.

Solution: Note that x =0 is a fixed point for all (a, b). This makes it plausible that
the fixed point will bifurcate transcritically, if it bifurcates at all. For small x, we find

—bx

I—e™ =1-[1-bx+4b’x" +O0(x")
=bx—+b°x* + O(x”)
and so
x=x—a(bx—Lb’x*)+O(x?)

=(1-ab)x + (3 ab*)x* + O(x").
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Hence a transcritical bifurcation occurs when ab = 1; this is the equation for the bi-
furcation curve. The nonzero fixed point is given by the solution of
l1—ab+(Lab*)x =0 ,ie., '

_ 2(ab—-1)

x*
2
ab

This formula is approximately correct only if x * is small, since our series expansions
are based on the assumption of small x. Thus the formula holds only when ab is
close to 1, which means that the parameters must be close to the bifurcation curve. m

EXAMPLE 3.2.2:

Analyze the dynamics of x =rInx+x —1 near x =1, and show that the system
undergoes a transcritical bifurcation at a certain value of r. Then find new vari-
ables X and R such that the system reduces to the approximate normal form
X =~ RX — X? near the bifurcation.

Solution: First note that x =1 is a fixed point for all values of r. Since we are
interested in the dynamics near this fixed point, we introduce a new variable
u=x—1,where u is small. Then

u=x
=rin(l+u)+u
= r[ —tu’ + O(us)]+u
~(r+Du—4ru® +0W?).
Hence a transcritical bifurcation occurs at r, = —1.

To put this equation into normal form, we first need to get rid of the coefficient
of u*. Let u = av, where a will be chosen later. Then the equation for v is

v=(r+lyv—-(3 ra)v2 +007).
So if we choose a = 2/r, the equation becomes
v=(r+Dv—v>+00?).

Now if we let R=r+1 and X =v, we have achieved the approximate normal
form X = RX — X?, where cubic terms of order O(X’) have been neglected. In
terms of the original variables, X =v=u/a=4r(x—1).m

To be a bit more accurate, the theory of normal forms assures us that we can
find a change of variables such that the system becomes X = RX — X? , with strict,
rather than approximate, equality. Our solution above gives an approximation to
the necessary change of variables. If we wanted a better approximation, we would
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retain the cubic terms in the series expansions (and perhaps even higher-order
terms if we’re really feeling heroic) and we would have to do a more elaborate cal-
culation to eliminate these higher-order terms. See Exercises 3.2.6 and 3.2.7 for a
taste of such calculations, or see the books of Guckenheimer and Holmes (1983),
Wiggins (1990), or Manneville (1990).

3.3 Laser Threshold

Now it’s time to apply our mathematics to a scientific example. We analyze an ex-
tremely simplified model for a laser, following the treatment given by Haken (1983).

Physical Background

We are going to consider a particular type of laser known as a solid-state laser,
which consists of a collection of special “laser-active” atoms embedded in a solid-
state matrix, bounded by partially reflecting mirrors at either end. An external energy
source is used to excite or “pump” the atoms out of their ground states (Figure 3.3.1).

!

active material

laser light
———.._._..

£
T

mirror

Figure 3.3.1

Each atom can be thought of as a little antenna radiating energy. When the pump-
ing is relatively weak, the laser acts just like an ordinary lamp: the excited atoms
oscillate independently of one another and emit randomly phased light waves.

Now suppose we increase the strength of the pumping. At first nothing different
happens, but then suddenly, when the pump strength exceeds a certain threshold, the
atoms begin to oscillate in phase—-thé lamp has turned into a laser. Now the trillions
of little antennas act like one giant antenna and produce a beam of radiation that is
much more coherent and intense than that produced below the laser threshold.

This sudden onset of coherence is amazing, considering that the atoms are being
excited completely at random by the pump! Hence the process is self-organizing: the
coherence develops because of a cooperative interaction among the atoms themselves.

Model

A proper explanation of the laser phenomenon would require us to delve into
quantum mechanics. See Milonni and Eberly (1988) for an intuitive discussion.
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Instead we consider a simplified model of the essential physics (Haken 1983, p.
127). The dynamical variable is the number of photons n(¢) in the laser field. Its
rate of change is given by ‘

n = gain — loss
= GnN —kn.

The gain term comes from the process of stimulated emission, in which photons
stimulate excited atoms to emit additional photons. Because this process occurs
via random encounters between photons and excited atoms, it occurs at a rate
proportional to n and to the number of excited atoms, denoted by N(¢) . The pa-
rameter G >0 is known as the gain coefficient. The loss term models the escape
of photons through the endfaces of the laser. The parameter & >0 is a rate con-
stant; its reciprocal 7 =1/k represents the typical lifetime of a photon in the
laser.

Now comes the key physical idea: after an excited atom emits a photon, it drops
down to a lower energy level and is no longer excited. Thus N decreases by the
emission of photons. To capture this effect, we need to write an equation relating
N to n. Suppose that in the absence of laser action, the pump keeps the number of
excited atoms fixed at N,. Then the actual number of excited atoms will be re-
duced by the laser process. Specifically, we assume

N(t)=N,-an,
where & > 0 is the rate at which atoms drop back to their ground states. Then

n=Gn(N,—an)—kn
=(GN,-k)n—(aG)n’.

We’re finally on familiar ground—this is a first-order system for n(z). Figure
3.3.2 shows the corresponding vector field for different values of the pump
strength N, . Note that only positive values of n are physically meaningful.

No <k/G N0=k/G No)k/G

Figure 3.3.2
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When N, <k/G, the fixed point at n* =0 is stable. This means that there is no
stimulated emission and the laser acts like a lamp. As the pump strength N, is in-
creased, the system undergoes a transcritical bifurcation when N, =k/G. For
N, >k/G, the origin loses stability and a stable fixed point appears at
n*=(GN, —k)/oG >0, corresponding to spontaneous laser action. Thus
N, =k/G can be interpreted as the laser threshold in this model. Figure 3.3.3
summarizes our results.

laser

k/G Ny

Figure 3.3.3

Although this model correctly predicts the existence of a threshold, it ignores
the dynamics of the excited atoms, the existence of spontaneous emission, and sev-
eral other complications. See Exercises 3.3.1 and 3.3.2 for improved models.

3.4 Pitchfork Bifurcation

We turn now to a third kind of bifurcation, the so-called pitchfork bifurcation.
This bifurcation is common in physical problems that have a symmetry. For ex-
ample, many problems have a spatial symmetry between left and right. In such
cases, fixed points tend to appear and disappear in symmetrical pairs. In the buck-
ling example of Figure 3.0.1, the beam is stable in the vertical position if the load
is small. In this case there is a stable fixed point corresponding to zero deflection.
But if the load exceeds the buckling threshold, the beam may buckle to either the
left or the right. The vertical position has gone unstable, and two new symmetri-
cal fixed points, corresponding to left- and right-buckled configurations, have
been born.

There are two very different types of pitchfork bifurcation. The simpler type is
called supercritical, and will be discussed first.

Supercritical Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is

x=rx—x. (1)
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Note that this equation is invariant under the change of variables x — —x . That
is, if we replace x by —x and then cancel the resulting minus signs on both sides
of the equation, we get (1) back again. This invariance is the mathematical ex-
pression of the left-right symmetry mentioned earlier. (More technically, one
says that the vector field is equivariant, but we’ll use the more familiar lan-
guage.)

Figure 3.4.1 shows the vector field for different values of r.

X x %
T x X X
(@ r<0 (b) r=0 (©) r>0

Figure 3.4.1

When r < 0, the origin is the only fixed point, and it is stable. When r =0, the ori-
gin is still stable, but much more weakly so, since the linearization vanishes. Now
solutions no longer decay exponentially fast—instead the decay is a much slower
algebraic function of time (recall Exercise 2.4.9). This lethargic decay is called
critical slowing down in the physics literature. Finally, when r > 0, the origin has
become unstable. Two new stable fixed points appear on either side of the origin,
symmetrically located at x* = ++/r.

The reason for the term “pitchfork™ becomes clear when we plot the bifurcation
diagram (Figure 3.4.2). Actually, pitchfork trifurcation might be a better word!

stable

stable mes——— - - - - . unstable

stable

Figure 3.4.2
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EXAMPLE 3.4.1:

Equations similar to x = —x + Stanh x arise in statistical mechanical models of
magnets and neural networks (see Exercise 3.6.7 and Palmer 1989). Show that this
equation undergoes a supercritical pitchfork bifurcation as f is varied. Then give
a numerically accurate plot of the fixed points for each S.

Solution: We use the strategy of Example 3.1.2 to find the fixed points. The
graphs of y=x and y = Btanh x are shown in Figure 3.4.3; their intersections cor-
respond to fixed points. The key thing to realize is that as 3 increases, the tanh
curve becomes steeper at the origin (its slope there is ). Hence for <1 the ori-
gin is the only fixed point. A pitchfork bifurcation occurs at =1, x*=0, when
the tanh curve develops a slope of 1 at the origin. Finally, when 3 >1, two new
stable fixed points appear, and the origin becomes unstable.

Btanhx

B<1 B=1 B>1

Figure 3.4.3

Now we want to compute the fixed points x* for each . Of course, one fixed
point always occurs at x* = 0; we are looking for the other, nontrivial fixed points.
One approach is to solve the
equation x*= Btanhx* nu-
merically, using the Newton—
Raphson method or some other
root-finding scheme. (See Press
et al. (1986) for a friendly and
informative discussion of nu-
merical methods.)

But there’s an easier way,
which comes from changing
'60 1 : ' ,B our point of view. Instead of
studying the dependence of
x* on 3, we think of x* as
the independent variable, and
then compute = x */tanh x *. This gives us a table of pairs (x*, B). For each pair,
we plot B horizontally and x * vertically. This yields the bifurcation diagram (Fig-
ure 3.4.4).

6_

Figure 3.4.4
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The shortcut used here exploits the fact that f(x, ) = —x+ Btanhx depends
more simply on B than on x . This is frequently the case in bifurcation problems—
the dependence on the control parameter is usually simpler than the dependence on
X.m

EXAMPLE 3.4.2:

Plot the potential V(x) for the system x = rx— x”, for the cases r <0, r=0,
and r>0.

Solution: Recall from Section 2.7 that the potential for x = f(x) is defined by
f(x)=—dV/dx. Hence we need to solve —dV/dx =rx—x’. Integration yields
V(x)=~1rx* + 1 x*, where we neglect the arbitrary constant of integration. The cor-
responding graphs are shown in Figure 3.4.5.

1% 1% 1%

r<0 r=0 r>0

Figure 3.4.5

When r <0, there is a quadratic minimum at the origin. At the bifurcation value
r =0, the minimum becomes a much flatter quartic. For >0, a local maxi-
mum appears at the origin, and a symmetric pair of minima occur to either side
of it. m

Subcritical Pitchfork Bifurcation

In the supercritical case x = rx — x° discussed above, the cubic term is stabiliz-
ing: it acts as a restoring force that pulls x(¢) back toward x = 0. If instead the cu-
bic term were destabilizing, as in

X=rx+x°, (2)

then we’d have a subcritical pitchfork bifurcation. Figure 3.4.6 shows the bifurca-
tion diagram.

58 BIFURCATIONS




unstable

Stable ———t - -~ -~ - -~ ~ unstable

unstable

Figure 3.4.6

Compared to Figure 3.4.2, the pitchfork is inverted. The nonzero fixed points
x*=++/—r are unstable, and exist only below the bifurcation (r < 0 ), which moti-
vates the term “subcritical.” More importantly, the origin is stable for » < 0 and un-
stable for r > 0, as in the supercritical case, but now the instability for » > 0 is not
opposed by the cubic term—in fact the cubic term lends a helping hand in driving the
trajectories out to infinity! This effect leads to blow-up: one can show that
x(t) — teo in finite time, starting from any initial condition x, # 0 (Exercise 2.5.3).

In real physical systems, such an explosive instability is usually opposed by the
stabilizing influence of higher-order terms. Assuming that the system is still sym-
metric under x — —x , the first stabilizing term must be x° . Thus the canonical ex-
ample of a system with a subcritical pitchfork bifurcation is

i=rx+x —x". (3)
There’s no loss in generality in assuming that the coefficients of x* and x° are 1
(Exercise 3.5.8).
The detailed analysis of (3) is left to you (Exercises 3.4.14 and 3.4.15). But we will

summarize the main results here. Figure 3.4.7 shows the bifurcation diagram for (3).
For small x, the picture looks just like

* Figure 3.4.6: the origin is locally sta-
(/—— ble for r<0, and two backward-
el .. bending branches of unstable fixed
0 | - oS points bifurcate from the origin when
r, 70 r  r=0. The new feature, due to the x°
e - term, is that the unstable branches turn
'\ around and become stable at r =r,,
—_— where r, <0. These stable large-
amplitude branches exist forall 7 > r,.

Figure 3.4.7
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There are several things to note about Figure 3.4.7:

1. In the range r, < r <0, two qualitatively different stable states coexist,
namely the origin and the large-amplitude fixed points. The initial con-
dition x, determines which fixed point is approached as ¢ — oo . One
consequence is that the origin is stable to small perturbations, but not to
large ones—in this sense the origin is locally stable, but not globally
stable.

2. The existence of different stable states allows for the possibility of
Jjumps and hysteresis as r is varied. Suppose we start the system in the
state x* =0, and then slowly increase the parameter r (indicated by an
arrow along the r-axis of Figure 3.4.8).

X -

0 - ERREEEEEE
T, et -0 r
Figure 3.4.8

Then the state remains at the origin until r = 0, when the origin loses
stability. Now the slightest nudge will cause the state to jump to one of
the large-amplitude branches. With further increases of r, the ‘state
moves out along the large-amplitude branch. If r is now decreased, the
state remains on the large-amplitude branch, even when r is decreased
below 0! We have to lower r even further (down past r,) to get the
state to jump back to the origin. This lack of reversibility as a parame-
ter is varied is called hysteresis.

3. The bifurcation at r, is a saddle-node bifurcation, in which stable and
unstable fixed points are born “out the clear blue sky” as r is increased
(see Section 3.1).

Terminology

As usual in bifurcation theory, there are several other names for the bifurcations
discussed here. The supercritical pitchfork is sometimes called a forward bifurca-
tion, and is closely related to a continuous or second-order phase transition in sta-
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tistical mechanics. The subcritical bifurcation is sometimes called an inverted or
backward bifurcation, and is related to discontinuous or first-order phase transi-
tions. In the engineering literature, the supercritical bifurcation is sometimes
called soft or safe, because the nonzero fixed points are born at small amplitude; in
contrast, the subcritical bifurcation is hard or dangerous, because of the jump from
zero to large amplitude.

3.5 Overdamped Bead on a Rotating Hoop

In this section we analyze a classic problem from first-year physics, the bead on a
rotating hoop. This problem provides an example of a bifurcation in a mechanical
system. It also illustrates the subtleties involved in replacing Newton’s law, which
is a second-order equation, by a simpler first-order equation.
The mechanical system is shown in Figure 3.5.1. A bead
\_1/ @ of mass m slides along a wire hoop of radius r. The hoop is
constrained to rotate at a constant angular velocity @
about its vertical axis. The problem is to analyze the mo-
tion of the bead, given that it is acted on by both gravita-
tional and centrifugal forces. This is the usual statement of
the problem, but now we want to add a new twist: suppose
that there’s also a frictional force on the bead that opposes
: its motion. To be specific, imagine that the whole system is
Figure 3.5.1 immersed in a vat of molasses or some other very viscous
fluid, and that the friction is due to viscous damping.

Let ¢ be the angle between the bead and the downward vertical direction. By
convention, we restrict ¢ to the range —m < ¢ <7, so there’s only one angle for
each point on the hoop. Also, let p=rsin¢ denote the distance of the bead from
the vertical axis. Then the coordinates are as shown in Figure 3.5.2.

Now we write Newton’s law for the bead. There’s a down-
ward gravitational force mg, a sideways centrifugal force
mp®”, and a tangential damping force b(f). (The constants g
and b are taken to be positive; negative signs will be added
later as needed.) The hoop is assumed to be rigid, so we only
have to resolve the forces along the tangential direction, as
shown in Figure 3.5.3. After substituting p=rsin¢ in the
centrifugal term, and recalling that the tangential acceleration is ré, we obtain the
governing equation

Figure 3.5.2

mr(}i = —b¢—mgsin¢+mra)2 sin @ cos ¢. (1)
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This is a second-order differential
equation, since the second derivative (Z) is
the highest one that appears. We are not
yet equipped to analyze second-order
——————— mpw” equations, so we would like to find some
conditions under which we can safely ne-
glect the mr¢ term. Then (1) reduces to a
) first-order equation, and we can apply our
bo ‘ machinery to it.

Figure 3.5.3 Of course, this is a dicey business: we

can’t just neglect terms because we feel
like it! But we will for now, and then at the end of this section we’ll try to find a
regime where our approximation is valid.

mpa)2 cos ¢

Analysis of the First-Order System

Our concern now is with the first-order system
b¢ = —mgsin ¢ + mrw* sin g cos ¢

2

=mgsin¢[rw cosq)—l]. (2)
8

The fixed points of (2) correspond to equilibrium positions for the bead. What’s
your intuition about where such equilibria can occur? We would expect the bead to
remain at rest if placed at the top or the bottom of the hoop. Can other fixed points
occur? And what about stability? Is the bottom always stable?

Equation (2) shows that there are always fixed points where sin¢ = 0, namely
¢* =0 (the bottom of the hoop) and ¢* = 7 (the top). The more interesting result
is that there are two additional fixed points if

ro?

8

>1,

that is, if the hoop is spinning fast enough. These fixed points satisfy
¢* =+cos™ (g/rcoz) . To visualize them, we introduce a parameter

and solve cos ¢* =1/y graphically. We plot cos ¢ vs. ¢, and look for intersections
with the constant function 1/y, shown as a horizontal line in Figure 3.5.4. For
¥ <1 there are no intersections, whereas for y > 1 there is a symmetrical pair of in-
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______________ 1/y, vy <1
‘}J =
Yy >1
1 ¢
-7 T
cos ¢
Figure 3.5.4

tersections to either side of ¢* = 0. As ¥ — oo, these intersections approach +7/2.
Figure 3.5.5 plots the fixed points on the hoop for the cases ¥ <1 and y > 1.

top top
bottom bottom
<l y>1

Figure 3.5.5

To summarize our results so far, let’s plot all the fixed points as a function of
the parameter ¥ (Figure 3.5.6). As usual, solid lines denote stable fixed points and
broken lines denote unstable fixed points.

Figure 3.5.6
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We now see that a supercritical pitchfork bifurcation occurs at y =1. It’s left to
you to check the stability of the fixed points, using linear stability analysis or
graphical methods (Exercise 3.5.2). ‘

Here’s the physical interpretation of the results: When y <1, the hoop is rotat-
ing slowly and the centrifugal force is too weak to balance the force of gravity.
Thus the bead slides down to the bottom and stays there. But if ¥ > 1, the hoop is
spinning fast enough that the bottom becomes unstable. Since the centrifugal force
grows as the bead moves farther from the bottom, any slight displacement of the
bead will be amplified. The bead is therefore pushed up the hoop until gravity bal-
ances the centrifugal force; this balance occurs at ¢* = J_rcos"'(g/ rwz). Which of
these two fixed points is actually selected depends on the initial disturbance. Even
though the two fixed points are entirely symmetrical, an asymmetry in the initial
conditions will lead to one of them being chosen—physicists sometimes refer to
these as symmetry-broken solutions. In other words, the solution has less symme-
try than the governing equation.

What is the symmetry of the governing equation? Clearly the left and right
halves of the hoop are physically equivalent—this is reflected by the invariance of
(1) and (2) under the change of variables ¢ — —¢. As we mentioned in Section
3.4, pitchfork bifurcations are to be expected in situations where such a symmetry
exists.

Dimensional Analysis and Scaling

Now we need to address the question: When is it valid to neglect the inertia
term mr¢ in (1)? At first sight the limit m — O looks promising, but then we no-
tice that we’re throwing out the baby with the bathwater: the centrifugal and gravi-
tational terms vanish in this limit too! So we have to be more careful.

In problems like this, it is helpful to express the equation in dirmensionless form
(at present, all the terms in (1) have the dimensions of force.) The advantage of a
dimensionless formulation is that we know how to define small—it means “much
less than 1.” Furthermore, nondimensionalizing the equation reduces the number
of parameters by lumping them together into dimensionless groups. This reduc-
tion always simplifies the analysis. For an excellent introduction to dimensional
analysis, see Lin and Segel (1988). ‘

There are often several ways to nondimensionalize an equation, and the best
choice might not be clear at first. Therefore we proceed in a flexible fashion. We
define a dimensionless time 7 by

= r

T
where T is a characteristic time scale to be chosen later. When T is chosen cor-
rectly, the new derivatives d¢/dt and d’¢/dt> should be O(l), i.e., of order
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unity. To express these new derivatives in terms of the old ones, we use the chain
rule:

=40 _dodr_1do
Cdt drdt Tdr

and similarly
s L d¢
T? dt*

(The easy way to remember these formulas is to formally substitute 77 for t.)
Hence (1) becomes

mrd’¢  bdo . .
FF = _?E—mgsmq)anrwz sin¢cos ¢.

Now since this equation is a balance of forces, we nondimensionalize it by divid-
ing by a force mg. This yields the dimensionless equation

(g;zJZT(f=~(mZTJ§i—)—sin¢+[rc; )sin(pcosd). (3)

Each of the terms in parentheses is a dimensionless group. We recognize the group
r®*/g in the last term—that’s our old friend y from earlier in the section.

We are interested in the regime where the left-hand side of (3) is negligible
compared to all the other terms, and where all the terms on the right-hand side
are of comparable size. Since the derivatives are O(1) by assumption, and
sin ¢ = O(1), we see that we need

b r
—— = (1), and 7

mgT

<< 1.

The first of these requirements sets the time scale T : a natural choice is

Then the condition r/gT? <<1 becomes

2
é(m?gJ << 1, (4)

or equivalently,

b* >>m’gr.
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This can be interpreted as saying that the damping is very strong, or that the mass
is very small, now in a precise sense.
The condition (4) motivates us to introduce a dimensionless group

2
mogr
s=b§ (5)
Then (3) becomes
2
8%=—%—sin¢+ysin¢cos¢ . (6)

As advertised, the dimensionless Equation (6) is simpler than (1): the five parame-
ters m, g, r, ®, and b have been replaced by two dimensionless groups y and &€.

In summary, our dimensional analysis suggests that in the overdamped limit
€ — 0, (6) should be well approximated by the first-order system

49 _ | ‘
=) (7)

where

f(@)=—sing +ysin@cos¢
=sin@¢(ycos¢—1).

A Paradox

Unfortunately, there is something fundamentally wrong with our idea of replac-
ing a second-order equation by a first-order equation. The trouble is that a second-
order equation requires fwo initial conditions, whereas a first-order equation has
only one. In our case, the bead’s motion is determined by its initial position and ve-
locity. These two quantities can be chosen completely independent of each other.
But that’s not true for the first-order system: given the initial position, the initial
velocity is dictated by the equation d¢/dt = f(¢). Thus the solution to the first-
order system will not, in general, be able to satisfy both initial conditions.

We seem to have run into a paradox. Is (7) valid in the overdamped limit or not?
If it is valid, how can we satisfy the two arbitrary initial conditions demanded by (6)?

The resolution of the paradox requires us to analyze the second-order system
(6). We haven’t dealt with second-order systems before—that’s the subject of
Chapter 5. But read on if you’re curious; some simple ideas are all we need to fin-
ish the problem.

Phase Plane Analysis

Throughout Chapters 2 and 3, we have exploited the idea that a first-order sys-
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tem x = f(x) can be regarded as a vector field on a line. By analogy, the second-
order system (6) can be regarded as a vector field on a plane, the so-called phase
plane.

The plane is spanned by two axes, one for the angle ¢ and one for the angular
velocity d¢/dz. To simplify the notation, let

Q=¢'=dp/dr

where prime denotes differentiation with respect to 7. Then an initial condition for
(6) corresponds to a point (¢,, 2,) in the phase plane (Figure 3.5.7). As time
evolves, the phase point (¢(¢), £2(¢)) moves around in the phase plane along a fra-
Jectory determined by the solution to (6).

Q

6(0), Q(0))
\“’"/—\ ©(0), Q1)

¢

Figure 3.5.7

Our goal now is to see what those trajectories actually look like. As before, the
key idea is that the differential equation can be interpreted as a vector field on the
phase space. To convert (6) into a vector field, we first rewrite it as

eQ’ = f(9)-Q.
Along with the definition ¢" =  , this yields the vector field

¢ =Q (8a)

o= é( £($)-9Q). (8b)

We interpret the vector (¢’, ") at the point (¢, Q) as the local velocity of a phase
fluid flowing steadily on the plane. Note that the velocity vector now has two com-
ponents, one in the ¢-direction and one in the Q-direction. To visualize the trajec-
tories, we just imagine how the phase point would move as it is carried along by
the phase fluid.

In general, the pattern of trajectories would be difficult to picture, but the pre-
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sent case is simple because we are only interested in the limit € — 0. In this
limit, all trajectories slam straight up or down onto the curve C defined by
f(9) =Q, and then slowly ooze along this curve until they reach a fixed point
(Figure 3.5.8).

Q

C:f(9)-Q=0

\/ N /\ ?

Figure 3.5.8

To arrive at this striking conclusion, let’s do an order-of-magnitude calculation.
Suppose that the phase point lies off the curve C. For instance, suppose (¢, 2) lies
an O(1) distance below the curve C,ie., Q< f (¢) and f(¢)— Q= O(1). Then (8b)
shows that Q" is enormously positive: Q" = O(1/¢€) >> 1. Thus the phase point zaps
like lightning up to the region where f(¢)— € = O(¢). In the limit £ — 0, this re-
gion is indistinguishable from C. Once the phase point is on C, it evolves accord-
ing to Q= f(¢); that is, it approximately satisfies the first-order equation
9 = f(9).

Our conclusion is that a typical trajectory is made of two parts: a rapid initial
transient, during which the phase point zaps onto the curve where ¢’ = f(¢), fol-
lowed by a much slower drift along this curve.

Now we see how the paradox is resolved: The second-order system (6) does be-
have like the first-order system (7), but only after a rapid initial transient. During
this transient, it is not correct to neglect the term £d”¢/dz*. The problem with our
earlier approach is that we used only a single time scale T = b/mg; this time scale
is characteristic of the slow drift process, but not of the rapid transient (Exercise
3.5.5).

A Singular Limit

The difficulty we have encountered here occurs throughout science and engi-
neering. In some limit of interest (here, the limit of strong damping), the term con-
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taining the highest order derivative drops out of the governing equation. Then the
initial conditions or boundary conditions can’t be satisfied. Such a limit is often
called singular. For example, in fluid mechanics, the limit of high Reynolds num-
ber is a singular limit; it accounts for the presence of extremely thin “boundary lay-
ers” in the flow over airplane wings. In our problem, the rapid transient played the
role of a boundary layer—it is a thin layer of time that occurs near the boundary
t=0.

The branch of mathematics that deals with singular limits is called singular per-
turbation theory. See Jordan and Smith (1987) or Lin and Segel (1988) for an in-
troduction. Another problem with a singular limit will be discussed briefly in
Section 7.5.

3.6 Imperfect Bifurcations and Catastrophes

As we mentioned earlier, pitchfork bifurcations are common in problems that have
a symmetry. For example, in the problem of the bead on a rotating hoop (Section
3.5), there was a perfect symmetry between the left and right sides of the hoop. But
in many real-world circumstances, the symmetry is only approximate—an imper-
fection leads to a slight difference between left and right. We now want to see what
happens when such imperfections are present.

For example, consider the system

x=h+rx—x. (1)

If h=0, we have the normal form for a supercritical pitchfork bifurcation, and
there’s a perfect symmetry between x and —x . But this symmetry is broken when
h # 0 ; for this reason we refer to & as an imperfection parameter.

Equation (1) is a bit harder to analyze than other bifurcation problems we’ve
considered previously, because we have fwo independent parameters to worry
about (& and r). To keep things straight, we’ll think of » as fixed, and then exam-
ine the effects of varying k. The first step is to analyze the fixed points of (1).
These can be found explicitly, but we’d have to invoke the messy formula for the
roots of a cubic equation. It’s clearer to use a graphical approach, as in Example
3.1.2. We plot the graphs of y =rx— x and y = —h on the same axes, and look for
intersections (Figure 3.6.1). These intersections occur at the fixed points of (1).
When r <0, the cubic is monotonically decreasing, and so it intersects the hori-
zontal line y = —# in exactly one point (Figure 3.6.1a). The more interesting case is
r > 0; then one, two, or three intersections are possible, depending on the value of
h (Figure 3.6.1b).
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Figure 3.6.1

The critical case occurs when the horizontal line is just tangent to either the lo-
cal minimum or maximum of the cubic; then we have a saddle-node bifurcation.
To find the values of & at which this bifurcation occurs, note that the cubic has a
local maximum when = (rx — x)=r-3x>=0.Hence

and the value of the cubic at the local maximum is

_2r|r

rx — (X } .
( max) 3 3

max

Similarly, the value at the minimum is the negative of this quantity. Hence saddle-
node bifurcations occur when h = *h_(r), where

2r |r
h.(r)= R ER

Equation (1) has three fixed points for |/ < h (r) and one fixed point for |h| > h_(r).

To summarize the results so far, we plot the bifurcation curves h=*h_(r) in
the (r,h) plane (Figure 3.6.2). Note that the two bifurcation curves meet tangen-
tially at (r,4) = (0,0) ; such a point is called a cusp point. We also label the regions
that correspond to different numbers of fixed points. Saddle-node bifurcations oc-
cur all along the boundary of the regions, except at the cusp point, where we have a
codimension-2 bifurcation. (This fancy terminology essentially means that we
have had to tune two parameters, & and r, to achieve this type of bifurcation. Un-
til now, all our bifurcations could be achieved by tuning a single parameter, and
were therefore codimension-1 bifurcations.)
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Pictures like Figure 3.6.2 will prove very useful in our future work. We will
refer to such pictures as stability diagrams. They show the different types of
behavior that occur as we move around in parameter space (here, the (r,h)
plane).

Now let’s present our results in a more familiar way by showing the bifurcation
diagram of x * vs. r, for fixed & (Figure 3.6.3).

X X

/

r P r

(@) h=0 (b) h#0

Figure 3.6.3

When A =0 we have the usual pitchfork diagram (Figure 3.6.3a) but when A # 0,
the pitchfork disconnects into two pieces (Figure 3.6.3b). The upper piece consists
entirely of stable fixed points, whereas the lower piece has both stable and unstable
branches. As we increase r from negative values, there’s no longer a sharp transi-
tion at r = 0 ; the fixed point simply glides smoothly along the upper branch. Fur-
thermore, the lower branch of stable points is not accessible unless we make a
fairly large disturbance.
Alternatively, we could plot x * vs. h, for fixed r (Figure 3.6.4).
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Figure 3.6.4

When r<0 there’s one stable fixed point for each 4 (Figure 3.6.4a). However,
when 7> 0 there are three fixed points when |h| < 4_(r), and one otherwise (Figure
3.6.4b). In the triple-valued region, the middle branch is unstable and the upper and
lower branches are stable. Note that these graphs look like Figure 3.6.1 rotated by
90°.

There is one last way to plot the results, which may appeal to you if you like
to picture things in three dimensions. This method of presentation contains all
of the others as cross sections or projections.
If we plot the fixed points x* above the
(r,h) plane, we get the cusp catastrophe
surface shown in Figure 3.6.5. The surface
folds over on itself in certain places. The pro-
jection of these folds onto the (r,/) plane
yields the bifurcation curves shown in Figure
3.6.2. A cross section at fixed & yields Fig-
ure 3.6.3, and a cross section at fixed r
Figure 3.6.5 yields Figure 3.6.4.

The term catastrophe is motivated by the
fact that as parameters change, the state of the system can be carried over the edge
of the upper surface, after which it drops discontinuously to the lower surface (Fig-

ure 3.6.6). This jump could be truly cata-
strophic for the equilibrium of a bridge or a
building. We will see scientific examples of
catastrophes in the context of insect out-
\ breaks (Section 3.7) and in the following ex-
ample from mechanics.
h For more about catastrophe theory, see
)\ Zeeman (1977) or Poston and Stewart
(1978). Incidentally, there was a violent
controversy about this subject in the late

"

X

r
Figure 3.6.6
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1970s. If you like watching fights, have a look at Zahler and Sussman (1977) and
Kolata (1977).

Bead on a Tilted Wire

As a simple example of imperfect bifurcation and catastrophe, consider the fol-
lowing mechanical system (Figure 3.6.7).

Figure 3.6.7

A bead of mass m is constrained to slide along a straight wire inclined at an angle
6 with respect to the horizontal. The mass is attached to a spring of stiffness ¥ and
relaxed length L,, and is also acted on by gravity. We choose coordinates along
the wire so that x =0 occurs at the point closest to the support point of the spring;
let a be the distance between this support point and the wire.

In Exercises 3.5.4 and 3.6.5, you are asked to analyze the equilibrium positions
of the bead. But first let’s get some physical intuition. When the wire is horizontal
(8 =0), there is perfect symmetry between the left and right sides of the wire, and
x =0 1s always an equilibrium position. The stability of this equilibrium depends
on the relative sizes of L, and a: if L, <a, the spring is in tension and so the
equilibrium should be stable. But if L, >a, the spring is compressed and so we
expect an unstable equilibrium at x =0 and a pair of stable equilibria to either side
of it. Exercise 3.5.4 deals with this simple case. |

The problem becomes more interesting when we tilt the wire (8 # 0). For small
tilting, we expect that there are still three equilibria if L, > a . However if the tilt
becomes too steep, perhaps you can see intuitively that the uphill equilibrium
might suddenly disappear, causing the bead to jump catastrophically to the down-
hill equilibrium. You might even want to build this mechanical system and try it.
Exercise 3.6.5 asks you to work through the mathematical details.

3.7 Insect Outbreak

For a biological example of bifurcation and catastrophe, we turn now to a model
for the sudden outbreak of an insect called the spruce budworm. This insect is a se-
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rious pest in eastern Canada, where it attacks the leaves of the balsam fir tree.
When an outbreak occurs, the budworms can defoliate and kill most of the fir trees
in the forest in about four years. '

Ludwig et al. (1978) proposed and analyzed an elegant model of the interaction
between budworms and the forest. They simplified the problem by exploiting a sepa-
ration of time scales: the budworm population evolves on a fast time scale (they can
increase their density fivefold in a year, so they have a characteristic time scale of
months), whereas the trees grow and die on a slow time scale (they can completely
replace their foliage in about 7-10 years, and their life span in the absence of bud-
worms is 100-150 years.) Thus, as far as the budworm dynamics are concerned, the
forest variables may be treated as constants. At the end of the analysis, we will allow
the forest variables to drift very slowly—this drift ultimately triggers an outbreak.

Model

The proposed model for the budworm population dynamics is
- N
N=RN|1-—|-p(N).
( Kj p(N)

In the absence of predators, the budworm population N(¢) is assumed to grow logis-
tically with growth rate R and carrying capacity K . The carrying capacity depends
on the amount of foliage left on the trees,
and so it is a slowly drifting parameter; at
this stage we treat it as fixed. The term
P(N) represents the death rate due to preda-
‘ tion, chiefly by birds, and is assumed to
I N have the shape shown in Figure 3.7.1. There
A is almost no predation when budworms are
scarce; the birds seek food elsewhere. How-
ever, once the population exceeds a certain
critical level N = A, the predation turns on sharply and then saturates (the birds are
eating as fast as they can). Ludwig et al. (1978) assumed the specific form

B P(N)

Figure 3.7.1

BN?
N)=—2
PN ="\

where A, B> 0. Thus the full model is

N BN?
- (1)

N=RN(1—— — .
K) A*+N

We now have several questions to answer. What do we mean by an “outbreak”
in the context of this model? The idea must be that, as parameters drift, the bud-
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worm population suddenly jumps from a low to a high level. But what do we mean
by “low” and ‘“high,” and are there solutions with this character? To answer these
questions, it is convenient to recast the model into a dimensionless form, as in Sec-
tion 3.5.

Dimensionless Formulation

The model (1) has four parameters: R, K, A, and B. As usual, there are various
ways to nondimensionalize the system. For example, both A and K have the same
dimension as N, and so either N/A or N/K could serve as a dimensionless popu-
lation level. It often takes some trial and error to find the best choice. In this case,
our heuristic will be to scale the equation so that all the dimensionless groups are
pushed into the logistic part of the dynamics, with none in the predation part. This
turns out to ease the graphical analysis of the fixed points.

To get rid of the parameters in the predation term, we divide (1) by B and then let

x=N/A,

which yields

Adx R Ax x?
——=—Ax{1-— |- 5. (2)
Bdt B K) 1+x

Equation (2) suggests that we should introduce a dimensionless time 7 and dimen-
sionless groups r and &, as follows:

Bt RA K
T=—, r=—-—, k:——,
A B A
Then (2) becomes,
ﬂ—rx(l—ij— X (3)
art k 1+x*

which is our final dimensionless form. Here » and k are the dimensionless growth
rate and carrying capacity, respectively.

Analysis of Fixed Points

Equation (3) has a fixed point at x* =0 ; it is always unstable (Exercise 3.7.1).
The intuitive explanation is that the predation is extremely weak for small x, and
so the budworm population grows exponentially for x near zero.

The other fixed points of (3) are given by the solutions of

r(l—%)z ‘1+xx2 ' @
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Figure 3.7.2

This equation is easy to analyze graphi-
cally—we simply graph the right- and
left-hand sides of (4), and look for in-
tersections (Figure 3.7.2). The left-hand
side of (4) represents a straight line with
x-intercept equal to k£ and a y-intercept
equal to r, and the right-hand side rep-
resents a curve that is independent of
the parameters! Hence, as we vary the
parameters r and k , the line moves but

the curve doesn’t—this convenient property is what motivated our choice of

nondimensionalization.

Figure 3.7.3

Figure 3.7.2 shows that if £ 1is suf-
ficiently small, there is exactly one
intersection for any r > 0. However,
for large k , we can have one, two, or
three intersections, depending on the
value of r (Figure 3.7.3). Let’s sup-
pose that there are three intersections
a, b, and c. As we decrease r with
k fixed, the line rotates counter-
clockwise about k. Then the fixed
points b and ¢ approach each other

and eventually coalesce in a saddle-node bifurcation when the line intersects the
curve tangentially (dashed line in Figure 3.7.3). After the bifurcation, the only
remaining fixed point is a (in addition to x* =0, of course). Similarly, a and b

can collide and annihilate as r is increased.

To determine the stability of the fixed points, we recall that x* =0 is unstable,
and also observe that the stability type must alternate as we move along the x-axis.

Figure 3.7.4

Hence a is stable, b is unstable,
and c is stable. Thus, for » and
k in the range corresponding to
three positive fixed points, the
vector field is qualitatively like
that shown in Figure 3.7.4. The
smaller stable fixed point a is
called the refuge level of the
budworm population, while the
larger stable point ¢ is the out-
break level. From the point of

view of pest control, one would like to keep the population at a and away from c.
The fate of the system is determined by the initial condition x,; an outbreak occurs
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if and only if x, > & . In this sense the unstable equilibrium & plays the role of a
threshold.

An outbreak can also be triggered by a saddle-node bifurcation. If the parame-
ters r and k drift in such a way that the fixed point a disappears, then the popula-
tion will jump suddenly to the outbreak level ¢ . The situation is made worse by the
hysteresis effect—even if the parameters are restored to their values before the
outbreak, the population will not drop back to the refuge level.

Calculating the Bifurcation Curves

Now we compute the curves in (k, r) space where the system undergoes saddle-
node bifurcations. The calculation is somewhat harder than that in Section 3.6: we
will not be able to write r explicitly as a function of &, for example. Instead, the
bifurcation curves will be written in the parametric form (k(x), r(x)), where x
runs through all positive values. (Please don’t be confused by this traditional ter-
minology—one would call x the “parameter” in these parametric equations, even
though r and k are themselves parameters in a different sense.)

As discussed earlier, the condition for a saddle-node bifurcation is that the line
r(1 — x/k) intersects the curve x/(1+ x?) tangentially. Thus we require both

X X
)T ”

W) alme
—lrl1-=]l== 1. (6)
dx!i k dx | 1+x”

After differentiation, (6) reduces to

and’

ko (1+x>)?
We substitute this expression for r/k into (5), which allows us to express r solely
in terms of x. The result is

(1+x7)
Then inserting (8) into (7) yields
2x°
k=-——o0!. (9)
x" =1 .

The condition k£ > 0 implies that x must be restricted to the range x > 1.
Together (8) and (9) define the bifurcation curves. For each x > 1, we plot the
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corresponding point (k(x), r(x)) in the (k,r) plane. The resulting curves are
shown in Figure 3.7.5. (Exercise 3.7.2 deals with some of the analytical properties
of these curves.)

0.8 4
0.7
0.61
0.5
0.4-
0.31
0.2-
0.1
0.0

outbreak

bistable

" refuge

0 10 20 30 40
Figure 3.7.5

The different regions in Figure 3.7.5 are labeled according to the stable fixed
points that exist. The refuge level a is the only stable state for low r, and the out-
break level c is the only stable state for large r. In the bistable region, both stable
states exist.

The stability diagram is very similar to Figure 3.6.2. It too can be regarded as
the projection of a cusp catastrophe surface, as schematically illustrated in Figure
3.7.6. You are hereby challenged to graph the surface accurately!

X

outbreak

Figure 3.7.6

Comparison with Observations

Now we need to decide on biologically plausible values of the dimensionless
groups r = RA/B and k = K/A . A complication is that these parameters may drift

78 BIFURCATIONS



slowly as the condition of the forest changes. According to Ludwig et al. (1978), r
increases as the forest grows, while k£ remains fixed.

They reason as follows: let S denote the average size of the trees, interpreted as
the total surface area of the branches in a stand. Then the carrying capacity K
should be proportional to the available foliage, so K = K’S. Similarly, the half-
saturation parameter A in the predation term should be proportional to S ; preda-
tors such as birds search units of foliage, not acres of forest, and so the relevant
quantity A" must have the dimensions of budworms per unit of branch area. Hence
A=A’S and therefore '

S, k=—. ' (10)

The experimental observations suggest that for a young forest, typically
k =300 and r <1/2 so the parameters lie in the bistable region. The budworm
population is kept down by the birds, which find it easy to search the small number
of branches per acre. However, as the forest grows, S increases and therefore the
point (k,r) drifts upward in parameter space toward the outbreak region of Figure
3.7.5. Ludwig et al. (1978) estimate that r =1 for a fully mature forest, which lies
dangerously in the outbreak region. After an outbreak occurs, the fir trees die and
the forest is taken over by birch trees. But they are less efficient at using nutrients
and eventually the fir trees come back—this recovery takes about 50-100 years
(Murray 1989).

We conclude by mentioning some of the approximations in the model presented
here. The tree dynamics have been neglected; see Ludwig et al. (1978) for a dis-
cussion of this longer time-scale behavior. We’ve also neglected the spatial distri-
bution of budworms and their possible dispersal—see Ludwig et al. (1979) and
Murray (1989) for treatments of this aspect of the problem.

EXERCISES FOR CHAPTER 3

3.1 Saddle-Node Bifurcation

For each of the following exercises, sketch all the qualitatively different vector
fields that occur as r is varied. Show that a saddle-node bifurcation occurs at a
critical value of r, to be determined. Finally, sketch the bifurcation diagram of
fixed points x * versus r.

3.1.1 x=1+rx+x? 3.1.2 x=r-coshx

3.1.3 x=r+x—In(1+x) 314 x=r+3x—x/(1+x)

3.1.5 (Unusual bifurcations) In discussing the normal form of the saddle-node bi-
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furcation, we mentioned the assumption that a = df /o] # 0. To see what can hap-

pen if &f/ar(x*’rv)

the fixed points as a function of r.

(x*.1.)

= (), sketch the vector fields for the following examples, and then plot

a) x=r"—x*
b) x=r’+x’

3.2 Transcritical Bifurcation

For each of the following exercises, sketch all the qualitatively different vector
fields that occur as r is varied. Show that a transcritical bifurcation occurs at a crit-
ical value of r, to be determined. Finally, sketch the bifurcation diagram of fixed
points x * vs. r.

3.21 x=r+x’ 3.22 x=rx—In(l+x)
323 x=x-rx(l-x) 324 x=x(r—e")

3.2.5  (Chemical kinetics) Consider the chemical reaction system

A+X 2% X+B—*2 5.

£y

ko

This is a generalization of Exercise 2.3.2; the new feature is that X is used up in

the production of C .

a) Assuming that both A and B are kept at constant concentrations a and b,
show that the law of mass action leads to an equation of the form x = ¢, x — ¢, x’,
where x is the concentration of X, and ¢, and ¢, are constants to be deter-
mined.

b) Show that x* =0 is stable when k,b > k,a, and explain why this makes sense
chemically.

The next two exercises concern the normal form for the transcritical bifurcation. In
Example 3.2.2, we showed how to reduce the dynamics near a transcritical bifurca-
tion to the approximate form X = RX — X* + O(X?). Our goal now is to show that
the O(X”) terms can always be eliminated by a suitable nonlinear change of vari-
ables; in other words, the reduction to normal form can be made exact, not just ap-
proximate.

3.2.6 (Eliminating the cubic term) Consider the system X = RX — X* +aX’
+O0(X"), where R # 0. We want to find a new variable x such that the system trans-
forms into X = Rx — x* + O(x*). This would be a big improvement, since the cubic
term has been eliminated and the error term has been bumped up to fourth order.

Let x=X+bX" + O(X*), where b will be chosen later to eliminate the cubic
term in the differential equation for x. This is called a near-identity transforma-
tion, since x and X are practically equal; they differ by a tiny cubic term. (We
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have skipped the quadratic term X?, because it is not needed—you should check

this later.) Now we need to rewrite the system in terms of x ; this calculation re-

quires a few steps.

a) Show that the near-identity transformation can be inverted to yield
X =x+cx’ +0(x*), and solve for c.

b) Write x = X +3bX*X + O(X*), and substitute for X and X on the right-hand
side, so that everything depends only on x . Multiply the resulting series expan-
sions and collect terms, to obtain x = Rx — x* + kx* + O(x*), where k depends
ona,b,and R.

¢) Now the moment of triumph: Choose b so that k=0 .

d) Isis really necessary to make the assumption that R # 0 ? Explain.

3.2.7 (Eliminating any higher-order term) Now we generalize the method of
the last exercise. Suppose we have managed to eliminate a number of higher-
order terms, so that the system has been transformed into X =RX- X+
a,X" +0(X™), where n>3. Use the near-identity transformation x =X+
b,X" +O(X™') and the previous strategy to show that the system can be rewritten
as x = Rx—x* + o(x™"
many higher-order terms as we like.

) for an appropriate choice of b,. Thus we can eliminate as

3.3 Laser Threshold

3.3.1 (An improved model of a laser) In the simple laser model considered in
Section 3.3, we wrote an algebraic equation relating N, the number of excited
atoms, to n, the number of laser photons. In more realistic models, this would be re-
placed by a differential equation. For instance, Milonni and Eberly (1988) show that
after certain reasonable approximations, quantum mechanics leads to the system

n=GnN—kn
N=-GnN-fN+p.

Here G is the gain coefficient for stimulated emission, £ is the decay rate due to

loss of photons by mirror transmission, scattering, etc., f is the decay rate for

spontaneous emission, and p is the pump strength. All parameters are positive, ex-
cept p, which can have either sign.

' This two-dimensional system will be analyzed in Exercise 8.1.13. For now,

let’s convert it to a one-dimensional system, as follows.

a) Suppose that N relaxes much more rapidly than n. Then we may make the
quasi-static approximation N = 0. Given this approximation, express N(¢) in
terms of n(¢) and derive a first-order system for n. (This procedure is often
called adiabatic elimination, and one says that the evolution of N(¢) is slaved
to that of n(¢) . See Haken (1983).)

b) Show that n* =0 becomes unstable for p > p., where p, is to be determined.
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¢) What type of bifurcation occurs at the laser threshold p, ?
d) (Hard question) For what range of parameters is it Vahd to make the approxi-
mation used in (a)?

3.3.2 (Maxwell-Bloch equations) The Maxwell-Bloch equations provide an
even more sophisticated model for a laser. These equations describe the dynamics
of the electric field E, the mean polarization P of the atoms, and the population
inversion D:

E=x(P-E)
P=y,(ED- P)
D=y,(A+1-D—-AEP)

where k is the decay rate in the laser cavity due to beam transmission, ¥, and ¥,
are decay rates of the atomic polarization and population inversion, respectively,
and A is a pumping energy parameter. The parameter A may be positive, negative,
or zero; all the other parameters are positive.

These equations are similar to the Lorenz equations and can exhibit chaotic be-
havior (Haken 1983, Weiss and Vilaseca 1991). However, many practical lasers do
not operate in the chaotic regime. In the simplest case y,,7, >> Kk ; then P and D re-
lax rapidly to steady values, and hence may be adiabatically eliminated, as follows.
a) Assuming P=0, D=0, express P and D in terms of E , and thereby derive a

first-order equation for the evolution of E .

b) Find all the fixed points of the equation for E .
¢) Draw the bifurcation diagram of E* vs. A. (Be sure to distinguish between
stable and unstable branches.)

3.4 Pitchfork Bifurcation

In the following exercises, sketch all the qualitatively different vector fields that
occur as r is varied. Show that a pitchfork bifurcation occurs at a critical value of
r (to be determined) and classify the bifurcation as supercritical or subcritical. Fi-
nally, sketch the bifurcation diagram of x * vs. r.

3.4.1 x=rx + 4x3 3.4.2 x=rx—sinhx
rx
1+ x2

3.4.3 x=rx—4x3 344 x=x+

The next exercises are designed to test your ability to distinguish among the vari-
ous types of bifurcations—it’s easy to confuse them! In each case, find the values
of r at which bifurcations occur, and classify those as saddle-node, transcritical,
supercritical pitchfork, or subcritical pitchfork. Finally, sketch the bifurcation dia-
gram of fixed points x * vs. r.
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345 xi=r-3x 3.46 i=ri——
1+ x
347 i=5-re" 348 i=m-——y
1+x
3
3.4.9 x=x+tanh(rx) 3.4.10 x=rx+ 5
1+x

3.4.11 (An interesting bifurcation diagram) Consider the system x = rx —sinx .

a) For the case r =0, find and classify all the fixed points, and sketch the vector
field.

b) Show that when r > 1, there is only one fixed point. What kind of fixed point is
it?

c) As r decreases from o to 0, classify all the bifurcations that occur.

d) For 0<r<<1, find an approximate formula for values of r at which bifurca-
tions occur.

e) Now classify all the bifurcations that occur as r decreases 0 to —eo .

f) Plot the bifurcation diagram for —eo < r < eo, and indicate the stability of the
various branches of fixed points.

3.4.12 (“Quadfurcation”) With tongue in cheek, we pointed out that the pitch-
fork bifurcation could be called a “trifurcation,” since three branches of fixed
points appear for r > 0. Can you construct an example of a “quadfurcation,” in
which x = f(x, r) has no fixed points for r <0 and four branches of fixed points
for r>07? Extend your results to the case of an arbitrary number of branches, if
possible.

3.4.13 (Computer work on bifurcation diagrams) For the vector fields below,
use a computer to obtain a quantitatively accurate plot of the values of x* vs. r,
where 0 < r £3. In each case, there’s an easy way to do this, and a harder way us-
ing the Newton-Raphson method.

a) x=r—x—e ' b) x=1-x—-e"

3.4.14 (Subcritical pitchfork) Consider the system x =rx+x" —x°, which ex-

hibits a subcritical pitchfork bifurcation.

a) Find algebraic expressions for all the fixed points as r varies.

b) Sketch the vector fields as r varies. Be sure to indicate all the fixed points and
their stability.

c) Calculate r,, the parameter value at which the nonzero fixed points are born in a
saddle-node bifurcation.

3.4.15 (First-order phase transition) Consider the potential V(x) for the system

x=rx+x" —x’. Calculate r,, where r, is defined by the condition that V has three
equally deep wells, i.e., the values of V at the three local minima are equal.
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(Note: In equilibrium statistical mechanics, one says that a first-order phase
transition occurs at r = r, . For this value of r, there is equal probability of finding
the system in the state corresponding to any of the three minima. The freezing of
water into ice is the most familiar example of a first-order phase transition.)

3.4.16 (Potentials) In parts (a)—(c), let V(x) be the potential, in the sense that
x =—dV/dx. Sketch the potential as a function of r . Be sure to show all the quali-
tatively different cases, including bifurcation values of r.

a) (Saddle-node) x =r —x’

b) (Transcritical) x = rx — x’

¢) (Subcritical pitchfork) x = rx +x* — x°

3.5 Overdamped Bead on a Rotating Hoop
3.5.1  Consider the bead on the rotating hoop discussed in Section 3.5. Explain
in physical terms why the bead cannot have an equilibrium position with ¢ > /2.

3.5.2 Do the linear stability analysis for all the fixed points for Equation (3.5.7),
and confirm that Figure 3.5.6 is correct.

3.5.3 Show that Equation (3.5.7) reduces to 2,1—¢):A(D—B4)3 +0(¢°) near
¢=0. Find A and B. T

3.5.4 (Bead on a horizontal wire) A bead of mass m is constrained to slide along
a straight horizontal wire. A spring of relaxed length L, and spring constant k is at-
tached to the mass and to a support point a distance /4 from the wire (Figure 1).

l—x>
wIre
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-~
77777777777
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Figure 1

Finally, suppose that the motion of the bead is opposed by a viscous damping force

bx.

a) Write Newton’s law for the motion of the bead.

b) Find all possible equilibria, i.e., fixed points, as functions of k, A, m, b, and L.

c) Suppose m =0 . Classify the stability of all the fixed points, and draw a bifurca-

- tion diagram.

d) If m #0, how small does m have to be to be considered negligible? In what
sense is it negligible?
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3.5.5 (Time scale for the rapid transient) While considering the bead on the ro-
tating hoop, we used phase plane analysis to show that the equation

a9 d¢

SdTZ d—Tzf(¢)

d¢

has solutions that rapidly relax to the curve where Ir = f(¢).
T

a) Estimate the time scale T, for this rapid transient in terms of &, and then
express T,
b.

b) Rescale the original differential equation, using 7'

Sfast

in terms of the original dimensional quantities m, g, r, @, and

as the characteristic time

scale, instead of T

slow

=b/mg . Which terms in the equation are negligible on

this time scale?
¢) Show that T, <<T

Jast slow

are widely separated.)

and T,

stow

if € << 1. (In this sense, the time scales T,

fast

3.5.6 (A model problem about singular limits) Consider the linear differential
equation

eX+x+x=0,

subject to the initial conditions x(0)=1, x(0)=0.

a) Solve the problem analytically for all €>0.

b) Now suppose € << 1. Show that there are two widely separated time scales in
the problem, and estimate them in terms of €.

c) Graph the solution x(f) for € <<, and indicate the two time scales on the
graph.

d) What do you conclude about the validity of replacing €X + x+x =0 with its
singular limit x + x=07?

e) Give two physical analogs of this problem, one involving a mechanical system,
and another involving an electrical circuit. In each case, find the dimensionless
combination of parameters corresponding to £, and state the physical meaning
of the limit £ << 1.

3.5.7 (Nondimensionalizing the logistic equation) Consider the logistic equa-
tion N = rN(1 — N/K), with initial condition N(0) = N,.
a) This system h;s three dimensional parameters r, K , and N,. Find the dimen-
sions of each of these parameters.
b) Show that the system can be rewritten in the dimensionless form
dx

sz(l—x), x(0) = x,
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for appropriate choices of the dimensionless variables x, x,, and 7.

¢) Find a different nondimensionalization in terms of variables # and 7, where u
is chosen such that the initial condition is always u, =1.

d) Can you think of any advantage of one nondimensionalization over the other?

3.5.8 (Nondimensionalizing the subcritical pitchfork) The first-order system
= au+bu’ —cu’, where b,c> 0, has a subcritical pitchfork bifurcation at a=0.
Show that this equation can be rewritten as

X
—=rx+x' =%
dt

where x =u/U, T=t/T,and U, T, and r are to be determined in terms of a, b,
and c.

3.6 Imperfect Bifurcations and Catastrophes

3.6.1 (Warm-up question about imperfect bifurcation) Does Figure 3.6.3b cor-
respondto ~A>0 orto h<0?

3.6.2 (Imperfect transcritical bifurcation) Consider the system x =h + rx — x°.
When & =0, this system undergoes a transcritical bifurcation at » = 0. Our goal is
to see how the bifurcation diagram of x * vs. r is affected by the imperfection pa-
rameter 4.

a) Plot the bifurcation diagram for x = A+ rx — x>, forh<0,h=0,and h>0.

b) Sketch the regions in the (r, ) plane that correspond to qualitatively different
vector fields, and identify the bifurcations that occur on the boundaries of those
regions.

c) Plot the potential V(x) corresponding to all the different regions in the (r,4)
plane.

3.6.3 (A perturbation to the supercritical pitchfork) Consider the system

Xx=rx+ax’ —x', where —o < g <oo. When a =0, we have the normal form for

the supercritical pitchfork. The goal of this exercise is to study the effects of the

new parameter a .

a) For each a, there is a bifurcation diagram of x* vs. r. As a varies, these bi-
furcation diagrams can undergo qualitative changes. Sketch all the qualitatively
different bifurcation diagrams that can be obtained by varying a .

b) Summarize your results by plotting the regions in the (r,a) plane that corre-
spond to qualitatively different classes of vector fields. Bifurcations occur
on the boundaries of these regions; identify the types of bifurcations that
occur.

3.6.4 (Imperfect saddle-node) What happens if you add a small imperfection to
a system that has a saddle-node bifurcation?
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3.6.5 (Mechanical example of imperfect bifurcation and catastrophe) Consider
the bead on a tilted wire discussed at the end of Section 3.6.
a) Show that the equilibrium positions of the bead satisfy

. LO
mgsin@ = kx| 1 - ————1.

Vx* +a®
b) Show that this equilibrium equation can be written in dimensionless form as

-2 X

U 1+u’

for appropriate choices of R, &, and u .

c) Give a graphical analysis of the dimensionless equation for the cases R <1 and
R >1. How many equilibria can exist in each case?

d) Let r = R—1. Show that the equilibrium equation reduces to A+ ru—+4u’ =0
forsmall r, i, and u .

e) Find an approximate formula for the saddle-node bifurcation curves in the limit
of small r, h,and u .

f) Show that the exact equations for the bifurcation curves can be written in para-
metric form as

h(u) = -1, Rw) =(1+u*)""?,

where —eo <y <oo. (Hint: You may want to look at Section 3.7.) Check that
this result reduces to the approximate result in part (d).

g) Give a numerically accurate plot of the bifurcation curves in the (r,/4) plane.

h) Interpret your results physically, in terms of the original dimensional variables.

3.6.6 (Patterns in fluids) Ahlers (1989) gives a fascinating review of experiments

on one-dimensional patterns in fluid systems. In many cases, the patterns first emerge

via supercritical or subcritical pitchfork bifurcations from a spatially uniform state.

Near the bifurcation, the dynamics of the amplitude of the patterns are given approxi-

mately by 7A = 4 — gA® in the supercritical case, or 7A = €4 — gA® — kA® in the sub-

critical case. Here A(t) is the amplitude, 7 is a typical time scale, and € is a small
dimensionless parameter that measures the distance from the bifurcation. The para-
meter g > 0 in the supercritical case, whereas g <0 and &k > O in the subcritical case.

(In this context, the equation 7A = g4 — gA® is often called the Landau equation.)

a) Dubois and Bergé (1978) studied the supercritical bifurcation that arises in
Rayleigh—Bénard convection, and showed experimentally that the steady-state
amplitude depended on & according to the power law A* o g’ where
B =0.50+0.01. What does the Landau equation predict?

b) The equation 7A = A — gA®> — kA’ is said to undergo a tricritical bifurcation
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when g = 0 ; this case is the borderline between supercritical and subcritical bi-

furcations. Find the relation between A* and € when g=0.

c¢) In experiments on Taylor—Couette vortex flow, Aitta et al. (1985) were able to
change the parameter g continuously from positive to negative by varying the
aspect ratio of their experimental set-up. Assuming that the equation is modi-
fied to 7A = h+ A — gA® — kA", where h > 0 is a slight imperfection, sketch the
bifurcation diagram of A* vs. € in the three cases g>0, g=0, and g<O0.
Then look up the actual data in Aitta et al. (1985, Figure 2) or see Ahlers
(1989, Figure 15).

d) Inthe experiments of part (c), the amplitude A(¢) was found to evolve toward a
steady state in the manner shown in Figure 2 (redrawn from Ahlers (1989), Fig-
ure 18). The results are for the imperfect subcritical case g <0, h# 0. In the
experiments, the parameter € was switched at £ =0 from a negative value to a
positive value £ . In Figure 2, P increases from the bottom to the top.

large € £

small &f

Figure 2

_ Explain intuitively why the curves have this strange shape. Why do the curves for
large €, go almost straight up to their steady state, whereas the curves for small

€, rise to a plateau before increasing sharply to their final level? (Hint: Graph A
vs. A for different £ .)

3.6.7 (Simple model of a magnet) A magnet can be modeled as an enormous
collection of electronic spins. In the simplest model, known as the Ising model, the
spins can point only up or down, and are assigned the values S, =zI, for
i=1,...,N>>1. For quantum mechanical reasons, the spins like to point in the
same direction as their neighbors; on the other hand, the randomizing effects of
temperature tend to disrupt any such alignment.

An important macroscopic property of the magnet is its average spin or magne-
tization
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At high temperature the spins point in random directions and so m = 0 ; the mater-
ial is in the paramagnetic state. As the temperature is lowered, m remains near
zero until a critical temperature 7, is reached. Then a phase transition occurs and
the material spontaneously magnetizes. Now m > 0 ; we have a ferromagnet.

But the symmetry between up and down spins means that there are two possible
ferromagnetic states. This symmetry can be broken by applying an external mag-
netic field # , which favors either the up or down direction. Then, in an approxima-
tion called mean-field theory, the equation governing the equilibrium value of m is

h=Ttanh™ m— Jum

where J and »n are constants; J > 0 is the ferromagnetic coupling strength and n

is the number of neighbors of each spin (Ma 1985, p. 459).

a) Analyze the solutions m* of h=Ttanh™ m— Jam, using a graphical ap-
proach.

b) For the special case £ =0, find the critical temperature 7, at which a phase
transition occurs.

3.7 Insect Outbreak

3.7.1 (Warm-up question about insect outbreak model) Show that the fixed
point x* =0 is always unstable for Equation (3.7.3).

3.7.2 (Bifurcation curves for insect outbreak model)

a) Using Equations (3.7.8) and (3.7.9), sketch r(x) and k(x) vs. x . Determine the
limiting behavior of r(x) and k(x) as x > 1 and x — co.

b) Find the exact values of r, k, and x at the cusp point shown in Figure 3.7.5.

3.7.3 (A model of a fishery) The equation N= rN(1 - &) — H provides an ex-
tremely simple model of a fishery. In the absence of fishing, the population is as-
sumed to grow logistically. The effects of fishing are modeled by the term —H ,
which says that fish are caught or “harvested” at a constant rate H >0, indepen-
dent of their population N . (This assumes that the fishermen aren’t worried about
fishing the population dry—they simply catch the same number of fish every day.)
a) Show that the system can be rewritten in dimensionless form as
dx
el x(1-x)—h,
for suitably defined dimensionless quantities x, 7, and % .
b) Plot the vector field for different values of 4 .
c) Show that a bifurcation occurs at a certain value 4, and classify this bifurca-
tion. .
d) Discuss the long-term behavior of the fish population for 2 < h_ and £ > A, and
" give the biological interpretation in each case.
There’s something silly about this model—the population can become nega-
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tive! A better model would have a fixed point at zero population for all values of
H . See the next exercise for such an improvement.

3.7.4 (Improved model of a fishery) A refinement of the model in the last exer-
cise is

N:rN(l—ﬁ)—H N
K A+N
where H >0 and A > 0. This model is more realistic in two respects: it has a fixed
point at N =0 for all values of the parameters, and the rate at which fish are
caught decreases with N. This is plausible—when fewer fish are available, it is
harder to find them and so the daily catch drops.
a) Give a biological interpretation of the parameter A; what does it measure?
b) Show that the system can be rewritten in dimensionless form as

dx

X
—=x(1-x)—-h ,
drt X ) a+x

for suitably defined dimensionless quantities x, 7, a, and A.

¢) Show that the system can have one, two, or three fixed points, depending on the
values of a and & . Classify the stability of the fixed points in each case.

d) Analyze the dynamics near x =0 and show that a bifurcation occurs when
h = a . What type of bifurcation is it?

e) Show that another bifurcation occurs when 4 =+ (a + 1)2 , for a<a,, where a,
is to be determined. Classify this bifurcation.

f) Plot the stability diagram of the system in (a, /) parameter space. Can hystere-
sis occur in any of the stability regions?

3.7.5 (A biochemical switch) Zebra stripes and butterfly wing patterns are two
of the most spectacular examples of biological pattern formation. Explaining the
development of these patterns is one of the outstanding problems of biology; see
Murray (1989) for an excellent review of our current knowledge.

As one ingredient in a model of pattern formation, Lewis et al. (1977) considered
a simple example of a biochemical switch, in which a gene G is activated by a bio-
chemical signal substance S. For example, the gene may normally be inactive but
can be “switched on” to produce a pigment or other gene product when the concen-
tration of S exceeds a certain threshold. Let g(¢) denote the concentration of the
gene product, and assume that the concentration s, of S is fixed. The model is

kg2
o=k s, —k, g +—2——
8 190 28 k42+g2

where the k’s are positive constants. The production of gis stimulated by s, at a
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rate k, , and by an autocatalytic or positive feedback process (the nonlinear term).

There is also a linear degradation of g at a rate k, .
a) Show that the system can be put in the dimensionless form

2

—=s5s—-rx+
at 1+x°
where » >0 and s = 0 are dimensionless groups.

b) Show thatif s =0, there are two positive fixed points x * if » <r,, where r, is
to be determined.

c) Assume that initially there is no gene product, i.e., g(0) =0, and suppose s is
slowly increased from zero (the activating signal is turned on); what happens to
g(¢) 7 What happens if s then goes back to zero? Does the gene turn off again?

d) Find parametric equations for the bifurcation curves in (r, s) space, and classify
the bifurcations that occur.

e) Use the computer to give a quantitatively accurate plot of the stability diagram
in (r,s) space.

For further discussion of this model, see Lewis et al. (1977); Edelstein—Keshet

(1988), Section 7.5; or Murray (1989), Chapter 15.

3.7.6 (Model of an epidemic) In pioneering work in epidemiology, Kermack
and McKendrick (1927) proposed the following simple model for the evolution of
an epidemic. Suppose that the population can be divided into three classes: x(f) =
number of healthy people; y(f) = number of sick people; z(#) = number of dead
people. Assume that the total population remains constant in size, except for
deaths due to the epidemic. (That is, the epidemic evolves so rapidly that we can
ignore the slower changes in the populations due to births, emigration, or deaths by
other causes.)
Then the model is

x =—kxy
y=hkxy—"Ly
z=1Ly

where k and / are positive constants. The equations are based on two assump-

tions:

(i) Healthy people get sick at a rate proportional to the product of x and y . This
would be true if healthy and sick people encounter each other at a rate propor-
tional to their numbers, and if there were a constant probability that each such
encounter would lead to transmission of the disease.

(i) Sick people die at a constant rate ¢.

The goal of this exercise is to reduce the model, which is a third-order system,
to a first-order system that can analyzed by our methods. (In Chapter 6 we will see
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a simpler analysis.)

a) Show that x+y+z = N, where N is constant.

b) Use the x and Z equation to show that x(¢)=x,exp(—kz(z)/¢), where
x, = x(0).

c) Show that z satisfies the first-order equation z = ¢ [N —7—x,exp(— kz/ﬂ)].

d) Show that this equation can be nondimensionalized to

du =a—bu—e™"
dt

by an appropriate rescaling.

e) Showthat a>1 and b>0.

f) Determine the number of fixed points u * and classify their stability.

g) Show that the maximum of u(¢) occurs at the same time as the maximum of
both z(z) and y(r) . (This time is called the peak of the epidemic, denoted 7., -
At this time, there are more sick people and a higher daily death rate than at any
other time.)

h) Show that if b <1, then u(?) is increasing at # =0 and reaches its maximum at
some time 7, >0. Thus things get worse before they get better. (The term
epidemic is reserved for this case.) Show that u(r) eventually decreases to O.

1) On the other hand, show that 7., =0 if 5 >1. (Hence no epidemic occurs if
b>1.)

j) The condition b =1 is the threshold condition for an epidemic to occur. Can
you give a biological interpretation of this condition? ‘

k) Kermack and McKendrick showed that their model gave a good fit to data from
the Bombay plague of 1906. How would you improve the model to make it
more appropriate for AIDS? Which assumptions need revising?

For an introduction to models of epidemics, see Murray (1989), Chapter 19, or
Edelstein—Keshet (1988). Models of AIDS are discussed by Murray (1989) and
May and Anderson (1987). An excellent review and commentary on the Ker-
mack—McKendrick papers is given by Anderson (1991).
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