2

FLOWS ON THE LINE

2.0 Introduction

In Chapter 1, we introduced the general system

X =f(x, ..oux,)
x, = f,(x, ...,x,)

and mentioned that its solutions could be visualized as trajectories flowing through
an n-dimensional phase space with coordinates (x,, ...,x,). At the moment, this
idea probably strikes you as a mind-bending abstraction. So let’s start slowly, be-
ginning here on earth with the simple case n =1. Then we get a single equation of
the form

x= f(x).

Here x(¢) is a real-valued function of time 7, and f(x) is a smooth real-valued
function of x. We’ll call such equations one-dimensional or first-order systems.

Before there’s any chance of confusion, let’s dispense with two fussy points of
terminology:

1. The word system is being used here in the sense of a dynamical system,
not in the classical sense of a collection of two or more equations. Thus
a single equation can be a “system.”

2. We do not allow f to depend explicitly on time. Time-dependent or
“nonautonomous” equations of the form x = f(x,¢) are more compli-
cated, because one needs two pieces of information, x and ¢, to predict
the future state of the system. Thus x = f(x,7) should really be re-
garded as a two-dimensional or second-order system, and will there-
fore be discussed later in the book.
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2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will introduce
one of the most basic techniques of dynamics: interpreting a differential equation
as a vector field.

Consider the following nonlinear differential equation:

X =sin x. (1)

To emphasize our point about formulas versus pictures, we have chosen one of the
few nonlinear equations that can be solved in closed form. We separate the vari-
ables and then integrate:

dx

dt =——,
Sin x

which implies

t= J-cscx dx

=—In|cscx +cotx| + C.

To evaluate the constant C, suppose that x = x, at t =0. Then C = In [ CSC X, + cot x, \

Hence the solution is

csc x, +cot x,

t=In (2)

cSCx +cotx

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose x, = /4 ; describe the qualitative features of the solution x(r)
for all £ > 0. In particular, what happens as t — oo ?

2. For an arbitrary initial condition x,, what 1s the behavior of x(f) as
t—>oo ?

Think about these questions for a while, to see that formula (2) is not transparent.

In contrast, a graphical analysis of (1) is clear and simple, as shown in Figure
2.1.1. We think of ¢ as time, x as the position of an imaginary particle moving
along the real line, and x as the velocity of that particle. Then the differential
equation x = sin x represents a vector field on the line: it dictates the velocity vec-
tor x ateach x. To sketch the vector field, it is convenient to plot x versus x, and
then draw arrows on the x-axis to indicate the corresponding velocity vector at
each x. The arrows point to the right when x > 0 and to the left when x < 0.
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Figure 2.1.1

Here’s a more physical way to think about the vector field: imagine that fluid
is flowing steadily along the x-axis with a velocity that varies from place to
place, according to the rule x = sin x. As shown in Figure 2.1.1, the flow is to the
right when x >0 and to the left when x < 0. At points where x =0, there is no
flow; such points are therefore called fixed points. You can see that there are two
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed
points (often called attractors or sinks, because the flow is toward them) and
open circles represent unstable fixed points (also known as repellers or
sources).

Armed with this picture, we can now easily understand the solutions to the dif-
ferential equation x =sinx. We just start our imaginary particle at x, and watch
how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at x, = 7/4 moves to the
right faster and faster until it crosses x = /2 (where sinx reaches its
maximum). Then the particle starts slowing down and eventually ap-
proaches the stable fixed point x =7 from the left. Thus, the qualita-
tive form of the solution is as shown in Figure 2.1.2.

Note that the curve is concave up at first, and then concave down;
this corresponds to the initial acceleration for x < /2, followed by the
deceleration toward x = 7.

2. The same reasoning applies to any initial condition x,. Figure 2.1.1
shows thatif x >0 initially, the particle heads to the right and asymptot-
ically approaches the nearest sta-

ble fixed point. Similarly, if

L s x <0 initially, the particle ap-
proaches the nearest stable fixed
point to its left. If x =0, then x
remains constant. The qualitative

T . ..
4 form of the solution for any ini-
; tial condition is sketched in Fig-
A ure 2.1.3.
Figure 2.1.2
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Figure 2.1.3

In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed | X \ is greatest. But in
many cases gualitative information is what we care about, and then pictures are fine.

2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system x = f(x). We just need to draw the graph of f(x) and then use it to sketch
the vector field on the real line (the x-axis in Figure 2.2.1).

x

f(x)

—- 4/ - x

Figure 2.2.1
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As before, we imagine that a fluid is flowing along the real line with a local veloc-
ity f(x). This imaginary fluid is called the phase fluid, and the real line is the
phase space. The flow is to the right where f(x) > 0 and to the left where f(x)<0.
To find the solution to x = f(x) starting from an arbitrary initial condition x,, we
place an imaginary particle (known as a phase point) at x, and watch how it is car-
ried along by the flow. As time goes on, the phase point moves along the x-axis
according to some function x(¢) . This function is called the frajectory based at x,,
and it represents the solution of the differential equation starting from the initial
condition x,. A picture like Figure 2.2.1, which shows all the qualitatively differ-
ent trajectories of the system, is called a phase portrait.

The appearance of the phase portrait is controlled by the fixed points x *, de-
fined by f(x*)=0; they correspond to stagnation points of the flow. In Figure
2.2.1, the solid black dot is a stable fixed point (the local flow is toward it) and the
open dot is an unstable fixed point (the flow is away from it).

In terms of the original differential equation, fixed points represent equilib-
rium solutions (sometimes called steady, constant, or rest solutions, since if
x = x* initially, then x(¢) = x* for all time). An equilibrium is defined to be sta-
ble if all sufficiently small disturbances away from it damp out in time. Thus sta-
ble equilibria are represented geometrically by stable fixed points. Conversely,
unstable equilibria, in which disturbances grow in time, are represented by unsta-
ble fixed points.

EXAMPLE 2.2.1:

Find all fixed points for x = x* —1, and classify their stability.

Solution: Here f(x)=x*—1. To find the fixed points, we set f(x*)=0 and
solve for x *. Thus x* = £1. To determine stability, we plot x% —1 and then sketch
the vector field (Figure 2.2.2). The flow is to the right where x* —1>0 and to the
left where x> —1< 0. Thus x* = —1 is stable, and x* =1 is unstable. m

f(x)= x* -1

i / T

Figure 2.2.2
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Note that the definition of stable equilibrium is based on small disturbances;
certain large disturbances may fail to decay. In Example 2.2.1, all small distur-
bances to x* = —1 will decay, but a large disturbance that sends x to the right of
x =1 will not decay—in fact, the phase point will be repelled out to +e . To em-
phasize this aspect of stability, we sometimes say that x* = —1 is locally stable, but
not globally stable. |

EXAMPLE 2.2.2:

Consider the electrical circuit shown in Figure 2.2.3. A resistor R and a capaci-
tor C are in series with a battery of constant dc voltage V. Suppose that the switch
is closed at t = 0, and that there is no charge on the capacitor initially. Let Q(¢) de-

] note the charge on the capacitor at time
——— t 2 0. Sketch the graph of Q(z).
R Solution: This type of circuit problem
is probably familiar to you. It is governed
: by linear equations and can be solved an-
alytically, but we prefer to illustrate the
geometric approach.

First we write the circuit equations. As
we go around the circuit, the total voltage
= drop must equal zero; hence -V, +
Figure 2.2.3 RI+Q/C=0, where I is the current
flowing through the resistor. This current causes charge to accumulate on the ca-
pacitor at a rate Q = I . Hence

—V0+RQ+Q/C=O or
y= r(oy= Yo 2
Q—f(Q)—R RC

The graph of f(Q) is a straight line with a negative slope (Figure 2.2.4). The
corresponding vector field has a fixed point where f(Q)=0, which occurs at
Q*=CV,. The flow is to the right where

0 f(Q)>0 and to the left where f(Q)<0.
Thus the flow is always toward Q *—it is a

Fi(9)
\ stable fixed point. In fact, it is globally sta-

ble, in the sense that it is approached from
Q  allinitial conditions.

o* To sketch Q(¢), we start a phase point at
the origin of Figure 2.2.4 and imagine how
it would move. The flow carries the phase
point monotonically toward Q*. Its speed

Figure 2.2.4
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O decreases linearly as it approaches the fixed point; therefore Q(t) is increasing
and concave down, as shown in Figure 2.2.5. m

Q
EXAMPLE 2.2.3:

Ve — — — — — — — Sketch the phase portrait corre-
sponding to x=x-—cosx, and deter-
mine the stability of all the fixed points.

Solution: One approach would be to
plot the function f(x)=x-cosx and

I then sketch the associated vector field.

Figure 2.2.5 This method is valid, but it requires you

to figure out what the graph of

x —cos x looks like.

There’s an easier solution, which exploits the fact that we know how to graph
y=x and y=cosx separately. We plot both graphs on the same axes and then
observe that they intersect in exactly one point (Figure 2.2.6).

y=x

N P :
\_/ |\/

Figure 2.2.6

This intersection corresponds to a fixed point, since x* =cosx* and therefore
f(x*) =0. Moreover, when the line lies above the cosine curve, we have x >cosx
and so x > 0: the flow is to the right. Similarly, the flow is to the left where the line is
below the cosine curve. Hence x * is the only fixed point, and it is unstable. Note that
we can classify the stability of x *, even though we don’t have a formula for x * it-
self! m

2.3 Population Growth

The simplest model for the growth of a population of organisms is N =rN,
where N(r) is the population at time ¢, and r >0 is the growth rate. This model
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Growth rate | predicts exponential growth:
N(t)= Nye", where N, is the
population at r = 0.

Of course such exponential
growth cannot go on forever.
To model the effects of over-
K N  crowding and limited resources,
population biologists and de-
mographers often assume that
the per capita growth rate N/ N
decreases when N becomes sufficiently large, as shown in Figure 2.3.1. For
small N, the growth rate equals r, just as before. However, for populations larger
than a certain carrying capacity
Growth rate K, the growth rate actually be-
comes negative; the death rate is

higher than the birth rate.
A mathematically convenient
way to incorporate these ideas is
to assume that the per capita

I\N growth rate N/N decreases lin-
early with N (Figure 2.3.2).
This leads to the logistic equation

N=rN(l—ﬂ)
K

r

Figure 2.3.1

r

Figure 2.3.2

first suggested to describe the growth of human populations by Verhulst in 1838.
This equation can be solved analytically (Exercise 2.3.1) but once again we prefer a
graphical approach. We plot N versus N to see what the vector field looks like.
Note that we plot only N 2> 0, since it makes no sense to think about a negative pop-
ulation (Figure 2.3.3). Fixed points occur at N* =0 and N* = K, as found by set-
ting N =0 and solving for N. By looking at the flow in Figure 2.3.3, we see that
N*=0 is an unstable fixed point and N* = K is a stable fixed point. In biological
terms, N =0 is an unstable equilibrium: a small population will grow exponen-
tially fast and run away from N = 0. On the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N(t) = K as t — co.

In fact, Figure 2.3.3 shows that if we start a phase point at any N, >0, it will al-
ways flow toward N = K. Hence the population always approaches the carrying
capacity.

The only exception is if N = 0; then there’s nobody around to start reproducing,
and so N =0 for all time. (The model does not allow for spontaneous generation!)
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Figure 2.3.3

Figure 2.3.3 also allows us to deduce the qualitative shape of the solutions. For
example, if N, < K/2, the phase point moves faster and faster until it crosses
N = K/2 , where the parabola in Figure 2.3.3 reaches its maximum. Then the phase
point slows down and eventually creeps toward N = K. In biological terms, this
means that the population initially grows in an accelerating fashion, and the graph
of N(t) is concave up. But after N = K/2, the derivative N begins to decrease,
and so N(¢) is concave down as it asymptotes to the horizontal line N = K (Figure
2.3.4). Thus the graph of N(t) is S-shaped or sigmoid for N, < K/2.

N

\

K/2 -

Figure 2.3.4

Something qualitatively different occurs if the initial condition N, lies between
K/2 and K; now the solutions are decelerating from the start. Hence these solu-
tions are concave down for all 7. If the population initially exceeds the carrying ca-
pacity (N, > K ), then N(¢) decreases toward N = K and is concave up. Finally, if
N, =0 or N, = K, then the population stays constant.

Critique of the Logistic Model
Before leaving this example, we should make a few comments about the biological
validity of the logistic equation. The algebraic form of the model is not to be taken lit-
erally. The model should really be regarded as a metaphor for populations that have a
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tendency to grow from zero population up to some carrying capacity K.

Originally a much stricter interpretation was proposed, and the model was ar-
gued to be a universal law of growth (Pearl 1927). The logistic equation was tested
in laboratory experiments in which colonies of bacteria, yeast, or other simple or-
ganisms were grown in conditions of constant climate, food supply, and absence of
predators. For a good review of this literature, see Krebs (1972, pp. 190-200).
These experiments often yielded sigmoid growth curves, in some cases with an im-
pressive match to the logistic predictions.

On the other hand, the agreement was much worse for fruit flies, flour beetles,
and other organisms that have complex life cycles, involving eggs, larvae, pupae,
and adults. In these organisms, the predicted asymptotic approach to a steady car-
rying capacity was never observed—instead the populations exhibited large, per-
sistent fluctuations after an initial period of logistic growth. See Krebs (1972) for a
discussion of the possible causes of these fluctuations, including age structure and
time-delayed effects of overcrowding in the population.

For further reading on population biology, see Pielou (1969) or May (1981).
Edelstein—Keshet (1988) and Murray (1989) are excellent textbooks on mathemat-
ical biology in general.

2.4 Llinear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of stability,
such as the rate of decay to a stable fixed point. This sort of information may be
obtained by linearizing about a fixed point, as we now explain.

Let x* be a fixed point, and let 77(¢) = x(¢#) — x * be a small perturbation away
from x *. To see whether the perturbation grows or decays, we derive a differential
equation for 7. Differentiation yields

N=4(x—x)=1

since x * is constant. Thus 11=x = f(x) = f(x *+ 1). Now using Taylor’s expan-
sion we obtain

fGx*+m= fa+nf (x*)+0M°),

where O(17*) denotes quadratically small terms in 77 . Finally, note that f(x*)=0
since x * is a fixed point. Hence

n=nf'(x*)+01n).

Now if f’(x*)#0, the O(n*) terms are negligible and we may write the approxi-
mation
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n=nf'(x%.

This is a linear equation in 77, and is called the linearization about x *. It shows
that the perturbation m(t) grows exponentially if f'(x*)>0 and decays if
f(x*)<0. If f’(x*¥)=0, the O(n*) terms are not negligible and a nonlinear
analysis is needed to determine stability, as discussed in Example 2.4.3 below.

The upshot is that the slope f’(x*) at the fixed point determines its stability. If
you look back at the earlier examples, you’ll see that the slope was always nega-
tive at a stable fixed point. The importance of the sign of f’(x*) was clear from
our graphical approach; the new feature is that now we have a measure of how sta-
ble a fixed point is—that’s determined by the magnitude of f’(x*). This magni-
tude plays the role of an exponential growth or decay rate. Its reciprocal 1/|/f ’(x*)\
is a characteristic time scale; it determines the time required for x(¢) to vary sig-
nificantly in the neighborhood of x *.

EXAMPLE 2.4.1:

Using linear stability analysis, determine the stability of the fixed points for
x =sinx.

Solution: The fixed points occur where f(x)=sinx =0. Thus x* =kx , where
k is an integer. Then

1, &k even

"(x*)=coskn =
J1(xt) = cos {—1, k odd.

Hence x * is unstable if k is even and stable if k£ is odd. This agrees with the re-
sults shown in Figure 2.1.1. m

EXAMPLE 2.4.2:

Classify the fixed points of the logistic equation, using linear stability analysis,
and find the characteristic time scale in each case.

Solution: Here f(N)=rN(1-%), with fixed points N*=0 and N* =K. Then
S/ (N)=r—2% and so f(0)=r and f’(K)=-r.Hence N*=0 is unstable and
N*=K 1is stable, as found earlier by graphical arguments. In either case, the char-
acteristic time scale is 1/|f'(N*)|=1/r . =

EXAMPLE 2.4.3:

What can be said about the stability of a fixed point when f’(x*)=0?

Solution: Nothing can be said in general. The stability is best determined on a
case-by-case basis, using graphical methods. Consider the following examples:

(@x=-x>  (b)x=x (c) x=x> (d x=0
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Each of these systems has a fixed point x* =0 with f’(x*)= 0. However the sta-
bility is different in each case. Figure 2.4.1 shows that (a) is stable and (b) is unsta-
ble. Case (c) is a hybrid case we’ll call half-stable, since the fixed point is
attracting from the left and repelling from the right. We therefore indicate this type
of fixed point by a half-filled circle. Case (d) is a whole line of fixed points; pertur-

bations neither grow nor decay.

X (@
X

X (c)
X

Figure 2.4.1

% ®)
X
% @

These examples may seem artificial, but we will see that they arise naturally in the
context of bifurcations—more about that later. m

2.5 Existence and Uniqueness

Our treatment of vector fields has been very informal. In particular, we have taken
a cavalier attitude toward questions of existence and uniqueness of solutions to
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" the system x = f(x). That’s in keeping with the “applied” spirit of this book.
Nevertheless, we should be aware of what can go wrong in pathological cases.

EXAMPLE 2.5.1:

'Show that the solution to x = x'* starting from x, = 0 is not unique.

Solution: The point x =0 is a fixed point, so one obvious solution is x(¢)=0
for all z. The surprising fact is that there is another solution. To find it we separate
variables and integrate:

J'x—‘”d,x - Idr
.

SO 7x2’ * =¢+ C. Imposing the initial condition x(0)=0 yields C=0. Hence
372 . .
x()=(% t) is also a solution! m

When uniqueness fails, our geometric approach collapses because the phase
point doesn’t know how to move; if a phase point were started at the origin, would
it stay there or would it move according to x(¢) = (% t)y2 ? (Or as my friends in el-
ementary school used to say when discussing the problem of the irresistible force
and the immovable object, perhaps the phase point would explode!)

Actually, the situation in Example 2.5.1 is even worse than we’ve let on—there
are infinitely many solutions starting from the same initial condition (Exercise

x : 2.5.4).

What’s the source of the non-uniqueness?

A hint comes from looking at the vector field

— - & p»——— (Figure 2.5.1). We see that the fixed point
*  x*=0 is very unstable—the slope f’(0) is
infinite.
Chastened by this example, we state a theo-
Figure 2.5.1 rem that provides sufficient conditions for exis-

tence and uniqueness of solutions to x = f(x).

Existence and Uniqueness Theorem: Consider the initial value problem
i=f(),  x(0)=x,.

Suppose that f(x) and f’(x) are continuous on an open interval R of the x-axis,
and suppose that x, is a point in R. Then the initial value problem has a solution
x(¢) on some time interval (—7,7) about ¢t =0, and the solution is unique.

For proofs of the existence and uniqueness theorem, see Borrelli and Coleman
(1987), Lin and Segel (1988), or virtually any text on ordinary differential equations.
This theorem says that if f(x) is smooth enough, then solutions exist and are
unique. Even so, there’s no guarantee that solutions exist forever, as shown by the
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next example.

EXAMPLE 2.5.2:

Discuss the existence and uniqueness of solutions to the initial value problem
x=1+x% x(0)= X,. Do solutions exist for all time?

Solution: Here f(x)=1+ x This function is continuous and has a continuous de-
rivative for all x. Hence the theorem tells us that solutions exist and are unique for any
initial condition x,. But the theorem does not say that the solutions exist for all time;
they are only guaranteed to exist in a (possibly very short) time interval around ¢ = 0.

For example, consider the case where x(0) = 0. Then the problem can be solved
analytically by separation of variables:

J. dxz :jdt,
1+x

which yields

tan"' x=r+C

The initial condition x(0) =0 implies C =0. Hence x(¢)=tan¢ is the solution.
But notice that this solution exists only for —7/2 <t < m/2, because x(t) — too as
t = /2. Outside of that time interval, there is no solution to the initial value
problem for x, =0. m

The amazing thing about Example 2.5.2 is that the system has solutions that
reach infinity in finite time. This phenomenon is called blow-up. As the name sug-
gests, it is of physical relevance in models of combustion and other runaway
processes.

There are various ways to extend the existence and uniqueness theorem. One
can allow f to depend on time ¢, or on several variables x, ... ,x,. One of the
most useful generalizations will be discussed later in Section 6.2.

From now on, we will not worry about issues of existence and uniqueness—our
vector fields will typically be smooth enough to avoid trouble. If we happen to
come across a more dangerous example, we’ll deal with it then.

2.6 Impossibility of Oscillations

Fixed points dominate the dynamics of first-order systems. In all our examples so
far, all trajectories either approached a fixed point, or diverged to *eo. In fact,
those are the only things that can happen for a vector field on the real line. The rea-
son is that trajectories are forced to increase or decrease monotonically, or remain
constant (Figure 2.6.1). To put it more geometrically, the phase point never re-
verses direction.
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Figure 2.6.1

Thus, if a fixed point is regarded as an equilibrium solution, the approach to
equilibrium is always monotonic—overshoot and damped oscillations can never
occur in a first-order system. For the same reason, undamped oscillations are im-
possible. Hence there are no periodic solutions to x = f(x).

These general results are fundamentally topological in origin. They reflect the
fact that x = f(x) corresponds to flow on a line. If you flow monotonically on a
line, you’ll never come back to your starting place—that’s why periodic solutions
are impossible. (Of course, if we were dealing with a circle rather than a line, we
could eventually return to our starting place. Thus vector fields on the circle can
exhibit periodic solutions, as we discuss in Chapter 4.)

Mechanical Analog: Overdamped Systems

It may seem surprising that solutions to x = f(x) can’t oscillate. But this result be-
comes obvious if we think in terms of a mechanical analog. We regard x = f(x) as a
limiting case of Newton’s law, in the limit where the “inertia term” mX is negligible.

For example, suppose a mass m is attached to a nonlinear spring whose restor-
ing force is F(x), where x is the displacement from the origin. Furthermore, sup-
pose that the mass is immersed in a vat of very viscous fluid, like honey or motor
oil (Figure 2.6.2), so that it is subject to a damping force bx . Then Newton’s law is

mx +bx =F(x).
honey If the viscous damping is strong compared

’ = to the inertia term (bx >>mx), the system

F should behave like bx = F(x), or equivalently

(x) x = f(x), where f(x)=b"F(x). In this over-

damped limit, the behavior of the mechanical

m system is clear. The mass prefers to sit at a sta-

S— " ble equilibrium, where f(x)=0and f’(x)<O0.
Figure 2.6.2

If displaced a bit, the mass is slowly dragged
back to equilibrium by the restoring force. No overshoot can occur, because the .
damping is enormous. And undamped oscillations are out of the question! These
conclusions agree with those obtained earlier by geometric reasoning.

2.6 IMPOSSIBILITY OF OSCILLATIONS 29



Actually, we should confess that this argument contains a slight swindle. The
neglect of the inertia term mX is valid, but only after a rapid initial transient during
which the inertia and damping terms are of comparable size. An honest discussion
of this point requires more machinery than we have available. We’ll return to this
matter in Section 3.5.

2.7 Potentials

There’s another way to visualize the dynamics of the first-order system x = f(x),
based on the physical idea of potential energy. We picture a particle sliding down
the walls of a potential well, where the potential V(x) is defined by

dav
f(x)—*g-

As before, you should imagine that the particle is heavily damped—its inertia is
completely negligible compared to the damping force and the force due to the po-
tential. For example, suppose that the particle has to slog through a thick layer of
goo that covers the walls of the potential (Figure 2.7.1).

V(x)

Figure 2.7.1

The negative sign in the definition of V follows the standard convention in
physics; it implies that the particle always moves “downhill” as the motion pro-
ceeds. To see this, we think of x as a function of ¢, and then calculate the time-
derivative of V(x(z)). Using the chain rule, we obtain

4V _dv dr
dt  dx dt’

Now for a first-order system,

30 FLOWS ON THE LINE



dx __dv

dar dx’
since x = f(x)=-—dV/dx, by the definition of the potential. Hence,

v, _(‘LVT <0.
dt dx

Thus V() decreases along trajectories, and so the particle élways moves toward
lower potential. Of course, if the particle happens to be at an equilibrium point
where dV/dx =0, then V remains constant. This is to be expected, since
dV/dx =0 implies x = 0; equilibria occur at the fixed points of the vector field.
Note that local minima of V(x) correspond to stable fixed points, as we’d expect
intuitively, and local maxima correspond to unstable fixed points.

EXAMPLE 2.7.1:

Graph the potential for the system x =—x, and identify all the equilibrium
points.

Solution: We need to find V(x) such. that

—dV/dx=-x. The general solution is V(x)=

1 x*+C, where C is an arbitrary constant. (It always

happens that the potential is only defined up to an ad-

ditive constant. For convenience, we usually choose

C=0.) The graph of V(x) is shown in Figure 2.7.2.

» The only equilibrium point occurs at x =0, and it’s

V(x)

stable. m

Figure 2.7.2

EXAMPLE 2.7.2:

Graph the potential for the system X=x—x’, and identify all equilibrium
points.

Solution: Solving —dV/dx=x—x" yields
V=-4x*+1x*+C. Once again we set C =0. Fig-
\ ‘ / ure 2.7.3 shows the graph of V. The local minima at

[ ; . X= +1 correspond to stable equilibria, and the local

-1 1 maximum at x =0 corresponds to an unstable equi-
librium. The potential shown in Figure 2.7.3 is often
called a double-well potential, and the system is said
Figure 2.7.3 to be bistable, since it has two stable equilibria.

V(x)
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