
Population growth in fluctuating environments
and measures of fitness

We now come to one of the most misunderstood topics in evolutionary

ecology, although Danny Cohen and Richard Lewontin set it straight

many years ago (Cohen 1966, Lewontin and Cohen 1969). I include it

here because at my university in fall 2002, there was an exchange at a

seminar between a member of the audience and the speaker which

showed that neither of them understood either the simplicity or the

depth of these ideas.

This section will begin in a deceptively simple way, but by the end

we will reach deep and sophisticated concepts. So, to begin imagine a

population without age structure for which N(t) is population size in

year t and N(0) is known exactly. If the per capita growth rate is l, then

the population dynamics are

Nðt þ 1Þ ¼ lNðtÞ (2:17)

from which we conclude, of course, that N(t)¼ ltN(0). If the per capita

growth rate is less than 1, the population declines, if it is exactly equal to

1 the population is stable, and if it is greater than 1 the population grows.

Now let us suppose that the per capita rate of growth varies, first in

space and then in time. Because there is no density dependence, the per

capita growth rate can also be used as a measure of fitness.

Spatial variation

Suppose that in every year, the environment consists of two kinds of

habitats. In the poor habitat the per capita growth rate is l1 and in the

better habitat it is l2. We assume that the fraction of total habitat that is

poor is p, so that the fraction of habitat that is good is 1% p. Finally, we

will assume that the population is uniformly distributed across the entire

habitat. At this point, I am sure that you want to raise various objections

such as ‘‘What if p varies from year to year?’’, ‘‘What if individuals can

move from poorer to better locations’’, etc. To these objections, I simply

ask for your patience.

Given these assumptions, in year t the number of individuals

experiencing the poor habitat will be pN(t) and the number of indivi-

duals experiencing the better habitat will be (1% p)N(t). Consequently,

the population size next year is

Nðt þ 1Þ ¼ ðl1pNðtÞ þ l2ð1% pÞNðtÞÞ ¼ fpl1 þ ð1% pÞl2gNðtÞ (2:18)

The quantity in curly brackets on the right hand side of this equation is

an average. It is the standard kind of average that we are all used to

Population growth in fluctuating environments and measures of fitness 31



(think about how your grade point average or a batting average is

calculated). If we had n different habitat qualities, instead of just two

habitat qualities, and let pi denote the fraction of habitat in which the

growth rate is li, then it is clear that what goes in the { } on the right

hand side of Eq. (2.18) will be
Pn

i¼1 pili. We call this the arithmetic

average. (I am tempted to put ‘‘arithmetic average’’ into bold-face or

italics, but Strunk and White (1979) tell me that if I need to do so – to

remind you that it is important – then I have not done my job.) Our

conclusion thus far: if variation occurs over space, then the arithmetic

average is the appropriate description of the growth rate.

Temporal variation

Let us now assume that per capita growth rate varies over time rather

than space. That is, with probability p every individual in the population

experiences the poorer growth rate in a particular year and with prob-

ability 1% p every individual experiences the better growth rate. Let us

suppose that t is very big; it will be composed of t1 years in which the

growth rate was poorer and t2 years in which the growth rate was better.

Since there is no density dependence in this model, it does not matter in

what order the years happen and we write

NðtÞ ¼ ðl1Þt1ðl2Þt2 Nð0Þ (2:19)

If the total time is large, then t1 and t2 should be roughly representative

of the fraction of years that are poorer or better respectively. That is, we

should expect t1 & pt and t2 & (1% p)t. How should you interpret the

symbol & in the previous sentence? If you are more mathematically

inclined, then the law of large numbers allows us to give precise

interpretation of what&means. If you are less mathematically inclined,

this is a case where you can count on your intuition and the world being

approximately fair.

Adopting this idea about the good and bad years, Eq. (2.19)

becomes

NðtÞ ¼ lpt
1 l
ð1%pÞt
2 Nð0Þ ¼ lp

1l
1%p
2

h it

Nð0Þ (2:20)

The quantity in square brackets on the right hand side of this equation is

a different kind of average. It is called the geometric mean (or geometric

average) and it weights the good and bad years differently than the

arithmetic average does. Perhaps the easiest way to see the differences

is to think about the extreme case in which the poorer growth rate is 0.

According to the arithmetic average, individuals who find themselves

in the better habitat will contribute to next year’s population and those
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who find themselves in the poorer habitat will not. On the other hand,

if the fluctuations are temporal, then when a poor year occurs, there is

no reproduction for the population as a whole and thus the population

is gone.

Exercise 2.6 (E/M)

Suppose that l1 is less than 1 (so that in poor years, the population declines).

Show that the condition for the population to increase using the geometric mean

is that l2 > l%p=ð1%pÞ
1 . Explore this relationship as l1 and p vary by making

appropriate graphs. (Do not use three dimensional graphs and recall the advice

of the Ecological Detective (Hilborn and Mangel 1997) that you should expect

to make 10 times as many graphs for yourself as you would ever show to others.)

Compare the results with the corresponding expression making the arithmetic

average greater than 1.

If instead of just two kinds of years, we allow n kinds of years, the

extension of the square brackets in Eq. (2.20) will be
Qn

i¼1 l
pi

i where theQ
denotes a product (much as

P
denotes a sum, as used above).

Now let us return to Eq. (2.17) for which N(t)¼ ltN(0) and recall that

the exponential and logarithm are inverse functions, l¼ exp(log(l)),

which allows us to write N(t) in a different way. In particular we have

N(t)¼ e[log(l)]tN(0), and if we define r¼ log(l), then we have come back

to our old friend from introductory ecology N(t)¼ ertN(0). That is,

if time were continuous, this looks like population growth satisfying

dN/dt¼ rN, in which r is the growth rate. But we can actually learn

some new things about fluctuating environments from this old friend,

because we know that r¼ log(l). In Figure 2.6a, I have plotted growth

rate as a function of l and I have shown two particular values of l that

might correspond to good years and poor years. Note that the line

segment joining these two points falls below the curve (such a curve

is called concave). This means that the growth rate at the arithmetic

average of l is larger than the average value of the growth rates. This

phenomenon is called Jensen’s inequality.

If we have more than two growth rates, then the expression in square

brackets in Eq. (2.20) is replaced by
Qn

i¼1 l
pi

i and if we rewrite this in

terms of logarithms we see that

NðtÞ ¼ exp t
Xn

i¼1

pi logðliÞ
" #

Nð0Þ (2:21)

From this equation, we conclude that the growth rate in a fluctuating

environment is r ¼
Pn

i¼1 pi logðliÞ, which is the arithmetic average of

the logarithm of the per capita growth rates. We thus conclude that for a

fluctuating environment, one either applies the geometric mean directly
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to the per capita growth rates or the arithmetic mean to the logarithm of

per capita growth rates.

What about measuring the growth rate of an actual population? Data

in a situation such as this one would be population sizes over time N(0),

N(1), . . . N(t) from which we could compute the per capita growth rate

as the ratio of population size at two successive years. We would then

replace the frequency average by a time average and estimate the

growth rate according to

r ' 1

t
½logðlð0ÞÞ þ logðlð1ÞÞ þ ) ) ) þ logðlðt % 1ÞÞ* (2:22)
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Figure 2.6. (a) The function r¼ log(l) is concave. This implies that fluctuating environments will have lower

growth rates than the growth rate associated with the average value of l. (b) The two color morphs of desert snow

Linanthus parryae are maintained by fitness differences in fluctuating environments. (c) An example of why this

plant is called desert snow. Photos courtesy of Paulette Bierzychudek.
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with the understanding that t is large. Since the sum of logarithms is

the logarithm of the product, the term in square brackets in Eq. (2.22) is

the same as log(l(0)l(1)l(2) . . . l(t% 1)). But l(s)¼N(sþ 1)/N(s), so

that when we evaluate the product of the per capita growth rates, the

product is

logðlð0Þlð1Þlð2Þ . . . lðt% 1ÞÞ
¼ logfðNð1Þ=Nð0ÞÞðNð2Þ=Nð1ÞÞ . . . ðNðtÞ=Nðt % 1ÞÞg ¼ logfNðtÞ=Nð0Þg

However, in a fluctuating environment, the sequence of per capita

rates (and thus population sizes) is itself random. Thus, Eq. (2.22)

provides the value of r for a specific sequence of population sizes. To

allow for others, we take the arithmetic average of Eq. (2.22) and write

r ¼ lim
t!1

1

t
E log

NðtÞ
Nð0Þ

! "# $
(2:23)

This formula is useful when dealing with data and when using simula-

tion models (for a nice example, see Easterling and Ellner (2000)).

A wonderful application of all of these ideas is found in Turelli et al.

(2001), which deals with the maintenance of color polymorphism in

desert snow Linanthus parryae, a plant (Figure 2.6b, c) that plays an

important role in the history of evolutionary biology (Schemske and

Bierzychudek 2001). If you stop reading this book now, and choose to

read the papers, you will also encounter the ‘‘diffusion approximation.’’

We will briefly discuss diffusion approximations in this chapter and

then go into them in great detail in the later chapters on stochastic

population theory.

Before leaving this section, I want to do one more calculation. It

involves a little bit of probability modeling, so you may want to hold off

until you’ve been through the next chapter. Suppose that we do not

know the probability distribution of the per capita growth rate, but we

do know the mean and variance of l, which I shall denote by !l and

Var(l). We begin by a Taylor expansion of r¼ log(l) around its mean

value, keeping up to second order terms:

logðlÞ ¼ logð!lÞ þ 1

l
ðl% !lÞ % 1

!l2
ðl% !lÞ2 (2:24)

and we now take the expectation of the right hand side. The first term

is a constant, so does not change, the second term vanishes because

Eflg ¼ !l and the expectation of the quantity in round brackets in the

last term is the variance of the per capita growth rate. We thus conclude

r & logð!lÞ % 1

!l2
VarðlÞ (2:25)
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This is a very useful expression for fitness or growth rate in a

fluctuating environment. The method is often called Seber’s delta

method, for G. A. F. Seber who popularized the idea in ecology (Seber

1982). I first learned about it while working in the Operations

Evaluation Group of the Center for Naval Analyses (Mangel 1982), so

I tend to call it the ‘‘method of Navy math.’’ Whatever you call it, the

method is handy.

The logistic equation and the discrete logistic
map – on the edge of chaos

It is likely true that every reader of this book – and especially any reader

who has reached this point – has encountered the logistic equation

previously. Even so, by returning to an old friend, we have a good

starting point for new kinds of explorations. As in the previous section,

we will begin with relatively simple material but end with remarkably

sophisticated stuff.

The logistic equation

We allow N(t) to represent population size at time t and assume that it

changes according to the dynamics

dN

dt
¼ rN 1% N

K

! "
(2:26)

In this equation, r and K are parameters; K is the population size at which

the growth rate of the population is 0. It is commonly called the carrying

capacity of the population. When the growth rate is 0, births and deaths

are still occurring, but they are exactly balancing each other. The right

hand side of Eq. (2.26) is a parabola, with zeros at N¼ 0 and N¼K and

maximum value rK/4 when N¼K/2, which is called the population size

that provides maximum net productitivity (MNP); see Figure 2.7a.

In order to understand the parameter r, it is easiest to consider the

per capita growth rate of the population

1

N

dN

dt
¼ r 1% N

K

! "
(2:27)

Inspection of the right hand side of Eq. (2.27) shows that it is a

decreasing function of population size and that its maximum value is r,

occurring when N¼ 0. Of course, if N¼ 0, this is biologically mean-

ingless – there won’t be any reproduction if the population size is 0.

What we mean, more precisely, is that in the limit of small population

size, the per capita growth rate approaches r – so that r is the maximum

per capita growth rate.
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Figure 2.7. An illustration of logistic dynamics when r¼0.2 and K¼100. (a) Population growth rate as a function

of population size. (b) Per capita growth rate as a function of population size. (c) Population size versus time for

populations that start above and below the carrying capacity.

The word logistic is derived from the French word logistique, which

means to compute. The scientist and mathematician Verhulst wanted to

be able to compute the population trajectory of France. He knew that

using the exponential growth equation dN/dt¼ rN would not work

because the population grows without bound. This happens because

with exponential growth the per capita growth rate is a constant (r).

We don’t know what Verhulst was thinking, but it might have gone

something like this: ‘‘I know that a constant per capita growth rate will

not be a good representation, and it must be true that per capita growth

rate declines as population size increases. Suppose that per capita
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growth rate falls to zero when the population size is K. What is the

simplest way to connect the points (0, r) and (K, 0)? Of course – a line.

C’est bon.’’ Furthermore, there is only one line that connects the max-

imum per capita growth rate r when N¼ 0 and per capita growth rate¼ 0

when N¼K. There are an infinite number of nonlinear ways that

we could do it. For example, a per capita growth rate of the form

r(1% (N/K)!), for any value of !> 0, works equally well to achieve

the goal of connecting the maximum and zero per capita growth rates.

So, the logistic is not a law of nature, but is a simple and somewhat

unique representation of nature. In Figure 2.7b, I show the per capita

growth rate for the same parameters as in Figure 2.7a.

Let us now think about the dynamics of a population starting at size

N(0) and following logistic growth. If N(0)>K, then the growth rate of

the population is negative and the population will decline towards K.

If N(0)> 0 but small, the population will grow, albeit slowly at first,

but then as population size increases, the growth rate increases too (even

though per capita growth rate is always declining, the product of per capita

growth rate and population size increases until N¼K/2). Once the popu-

lation size exceeds K/2, growth rate begins to slow, ultimately reaching 0

as the population approaches K. We thus expect the picture of population

size versus time to be S-shaped or sigmoidal and it is (Figure 2.7c).

Exercise 2.7 (M)

Although Eq. (2.26) is a nonlinear equation, it can be solved exactly (that is how

I generated the trajectories in Figure 2.7c) and everyone should do it at least

once in his or her career. The exercise is to show that the solution of Eq. (2.26) is

N(t)¼ [N(0)Kert] / [KþN(0)(ert% 1)]. To help you along, I offer two hints (the

method of partial fractions, if you want to check your calculus text). First,

separate the differential equation so that Eq. (2.26) becomes

dN

N 1% N
K

% & ¼ rdt

Second, recognize that the left hand side of this expression looks like a common

denominator, so write
1

N 1% N
K

% & ¼ A

N
þ B

1% N
K

% &

where A and B are constants that you determine by creating the common

denominator and simplifying.

The discrete logistic map and the edge of chaos

We now come to what must be one of the most remarkable stories

of good luck and good sleuthing in science. To begin this story,

38 Topics from ordinary and partial differential equations



I encourage you to stop reading just now, go to a computer and plot the

trajectories for N(t) given by the formula for N(t) in the previous

exercise, for a variety of values of r – let r range from 0.4 to about

3.5. After that return to this reading.

Now let us poke around a bit with the logistic equation by recogniz-

ing the definition of the derivative as a limiting process. Thus, we could

rewrite the logistic equation in the following form:

lim
dt!0

Nðt þ dtÞ % NðtÞ
dt

¼ rN 1% N

K

! "
(2:28)

This equation, of course, is no different from our starting point. But now

let us ignore the limiting process in Eq. (2.28) and simply set dt¼ 1.

If we do that Eq. (2.28) becomes a difference equation, which we can

write in the form

Nðt þ 1Þ ¼ NðtÞ þ rNðtÞ 1% NðtÞ
K

! "
(2:29)

This equation is called the logistic map, because it ‘‘maps’’ population

size at one time to population size at another time. You may also see it

written in the form

Nðt þ 1Þ ¼ rNðtÞ 1% NðtÞ
K

! "

which makes it harder to connect to the original differential equation.

Note, of course, that Eq. (2.29) is a perfectly good starting point, if we

think that the biology operates in discrete time (e.g. insect populations

with non-overlapping generations across seasons, or many species of

fish in temperate or colder waters).

Although Eq. (2.29) looks like the logistic differential equation, it

has a number of properties that are sufficiently different to make us

wonder about it. To begin, note that if N(t)>K then the growth term is

negative and if r is sufficiently large, not only could N(tþ 1) be less than

N(t), but it could be negative! One way around this is to use a slightly

different form called the Ricker map

Nðt þ 1Þ ¼ NðtÞ exp r 1% NðtÞ
K

! "' (
(2:30)

This equation is commonly used in fishery science for populations with

non-overlapping generations (e.g. salmonids) and misused for other

kinds of populations. It has a nice intuitive derivation, which goes like

this (and to which we will return in Chapter 6). Suppose that maximum

per capita reproduction is A, so that in the absence of density depend-

ence N(tþ 1)¼AN(t), and that density dependence acts in the sense

that a focal offspring has probability f of surviving when there is just
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one adult present. If there are N adults present, the probability that

the focal offspring will survive is f N. Combining these, we obtain

N(tþ 1)¼AN(t)f N(t), which surely suggests a good exercise.

Exercise 2.8 (E/M)

Often we set f N¼ e%bN, so that the Ricker map becomes N(tþ 1)¼AN(t)e%bN(t).

First, explain the connection between f and B and the relationship between the

parameters A, b and r, K. Second, explain why the Ricker map does not have the

nasty property that N(t) can be less than 0. Third, use the Taylor expansion of

the exponential function to show how the Ricker and discrete logistic maps are

connected.

But now let us return to Eq. (2.29) and explore it. To do this, we

begin by simply looking at trajectories. I am going to set K¼ 100,

N(0)¼ 20 and show N(t) for a number of different values of r

(Figure 2.8). When r is moderate, things behave as we expect: starting

at N(0)¼ 20, the population rises gradually towards K¼ 100. However,

when r¼ 2.0 (Figure 2.8c), something funny appears to be happening.

Instead of settling down nicely at K¼ 100, the population exhibits small

oscillations around that value. For r slightly larger (r¼ 2.3, panel d) the

oscillations become more pronounced, but still seem to be flipping back

and forth across K¼ 100. The behavior becomes even more compli-

cated when r gets larger – now there are multiple population sizes that

are consistently visited (Figure 2.8e). When r gets even larger, there

appears to be no pattern, just wild and erratic behavior. This behavior is

called deterministic chaos. It was discovered more or less accidentally

in a number of different ways in the 1960s and 1970s (see Connections).

Before explaining what is happening, I want to present the results

in a different way, obtained using the following procedure. I fixed r.

However, instead of fixing N(0), I picked it randomly and uniformly

(all values equally likely) between 1 and K. I then ran the population

dynamics for 500 time steps and plotted the point (r, N(500)). I repeated

this, with r still fixed, for 50 different starting values, then changed r and

began the process over again. The results, called a bifurcation (for

branching) diagram, are shown in Figure 2.9. When r is small, there

is only one place for N(500) to be – at carrying capacity K¼ 100.

However, once we enter the oscillatory regime, N(500) is never K – it

is either larger or smaller than K. And as r increases, we see that we

jump from 2 values of N(500) to 4 values, then on to 8, 16, 32 and

so forth (with the transition regions becoming closer and closer).

As r continues to increase, virtually all values can be taken by N(500).

You may want to stop reading now, go to your computer and create a

spreadsheet that does this same set of calculations.
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Figure 2.8. Dynamics of the discrete logistic, for varying values of r: (a) r¼0.4, (b) r¼1.0, (c) r¼2.0, (d) r¼2.3,

(e) r¼2.6, (f) r¼3.
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How do we understand what is happening? To begin we rewrite

Eq. (2.29) as

Nðt þ 1Þ ¼ ð1þ rÞNðtÞ % rNðtÞ2

K

and investigate this as a map relating N(tþ 1) to N(t). Clearly if N(t)¼ 0,

then N(tþ 1)¼ 0; also if N(t)¼K(1þ r)/r, then N(tþ 1)¼N(t). In

Figure 2.10, I have plotted this function, for three values of r, when

K¼ 100. I have also plotted the 1:1 line. The three curves and the line

intersect at the point (100, 100), or more generally at the point (K, K).

Using this figure, we can read off how the population dynamics grow.

Let us suppose that N(0)¼ 50, and r¼ 0.4. We can see then that

N(1)¼ 60 (by reading where the line N¼ 50 intersects the curve). We

then go back to the x-axis, for N(1)¼ 60, we see that N(2)¼ 69.6; we

then go back to the x-axis for N(2) and obtain N(3). In this case, it is clear

that the dynamics will be squeezed into the small region between the

curve and the 1:1 line. This procedure is called cob-webbing.

What happens if N(0)¼ 50 and r¼ 2.3? Well, then N(1)¼ 107.5,

but if we take that value back to the x-axis, we see that N(2) is about 89.

We have jumped right across the steady state at 100. From N(2)¼ 89,

we will go to N(3) about 111 and from there to N(4) about 82. The

behavior is even more extreme for the case in which r¼ 3: starting at

N(0)¼ 50, we go to 125 and from there to about 31; from 31 to about 95,

and so forth.
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Figure 2.9. The bifurcation

plot of N(500) versus r; see text

for details.
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This is a very interesting process – one in which simple determi-

nistic dynamics can produce a wide range of behaviors, including

oscillations and apparently random trajectories. These kinds of results

fall under the general rubric of deterministic chaos (see Connections).

A bit about bifurcations

The results of the previous section suggest that when we encounter a

differential or difference equation, we should consider not only the

solution, but how the solution depends upon the parameters of the

equation. This subject is generally called bifurcation theory (because,

as we will see, solutions ‘‘branch’’ as parameters vary). In this section,

we will consider the two simplest bifurcations and some of their impli-

cations. As we discuss the material, do not try to apply biological

interpretations to the equations; I have picked them to make illustrating

the main points as simple as possible. At the end of this section, I will

do one biological example and in Connections point you towards the

literature for other ones.

We begin with the differential equation

dx

dt
¼ x2 % ! (2:31)
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r = 2.3

r = 0.4

1�1 line

50

0
0 50

N
100

N
 (t

 +
 1

)

150

100

150 Figure 2.10. Logistic maps for

three different values of r,

allowing us to understand how

simple deterministic dynamics

can lead to oscillations and to

apparently random

trajectories.
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for the variable x(t) depending upon the single parameter !. When we

first encounter a differential equation, we may ask ‘‘What is the solution

of this equation?’’. The trouble is, the vast majority of differential

equations do not have explicit solutions. Given that restriction, a good

first question is ‘‘What are the steady states, that is for what values of

x is dx/dt equal to 0?’’. This is always a good question, and can often be

answered. For the dynamics in Eq. (2.31), the steady states are given by

xs ¼ +
ffiffiffiffi
!
p

. We thus conclude that if !< 0 there are no steady states

(more precisely, there are no real steady states) and that if !, 0 there

are one (when !¼ 0) or two steady states. We will call these steady

solutions branches; there are thus two branches, one of which is positive

and one of which is negative. Along these branches, dx/dt¼ 0. What

about elsewhere in the plane? Between the branches, ! is greater than

x2, so we conclude that dx/dt< 0 and that x(t) will decrease, thus

moving towards the lower branch. Anywhere else in the plane ! is

less than x2, so that dx/dt> 0 and x(t) will increase; I have summarized

this analysis in Figure 2.11.

Before going on with the analysis, a few stylistic comments. First,

note that I have put x on the ordinate and ! on the abscissa. Thus, one

might say ‘‘x is on the y axis, how confusing.’’ However, the labeling of

axes is a convention, not a rule, and one just needs to be careful when

conducting the analysis (more of this to come with the next bifurcation).

Second, I have used x(t) and x interchangeably; this is done for con-

venience (and for avoiding writing things in a more cumbersome

manner). Once again, this is not a problem if one is careful in under-

standing and presentation.

Returning to the figure, imagine that ! is fixed, but x may vary, and

that we are at some point along the positive branch. Then dx/dt¼ 0 and

α

Positive branch

�egative branch
x (t ) increasing

x (t ) increasing

x (t ) decreasing

x

–5 0 5 10 15 2520

Figure 2.11. The steady states

of the differential equation

dx/dt¼ x2%!, showing the

positive and negative

branches.
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we will stay there forever. However, if we receive a small perturbation

off that branch, interesting things happen. If the perturbation (until

otherwise notified, all perturbations are small) puts us between the

two branches, then x(t) declines and we move towards the negative

branch. If the perturbation puts us above the positive branch, then x(t)

increases and we move away from the positive branch. So, in either

case, a perturbation moves us away from the positive branch. We say

that such a branch is dynamically unstable (or just unstable). A similar

argument shows that perturbations from the negative branch return to it;

we say that the negative branch is stable. What happens when !¼ 0?

The differential equation becomes dx/dt¼ x2, so that x(t) is always

increasing. Thus, if x(0)< 0, x(t) rises towards 0; however if x(0)> 0,

x(t) moves away from 0. We say that such a point is marginally stable;

we also say that the equation dx/dt¼ x2%! is structurally unstable

(these words may appear to be needlessly complex, but think about

them and they make sense) when !¼ 0, because small changes of !
from the value 0 lead to very different properties of the equation (in this

case, either no steady states or two steady states). We also sometimes

say that the stable steady state and unstable steady state coalesce and

annihilate each other (kind of like matter and antimatter) when !¼ 0.

The next most complicated equation involves two parameters and a

cubic in x:

dx

dt
¼ %x3 þ !xþ " (2:32)

where ! and " are the parameters of interest. The steady states of this

equation satisfy the cubic equation x3%!x% "¼ 0. We will momenta-

rily discuss geometric solutions of this equation, but now begin with a

bit of algebra. A cubic equation has three solutions (by the fundamental

theorem of algebra), of which one may be real and two complex, three

may be real with two equal, or three may be real and unequal. Which

case applies is determined by the value of the discriminant D(!, ")¼
("2/4)% (!3/27). (You probably once learned this in high school algebra,

but most likely don’t remember it. This is a case where I ask that you

trust me; of course you can also go and check the formula in a book.)

If D(!, ")> 0, then there is one real solution; if D(!, ")¼ 0, then there

are three real solutions, two of which are equal; if D< (!, ") then

there are three real, unequal solutions. Thus, in some sense D(!, ")¼ 0

is a boundary. So, we need to think about the shape of "2¼ 4!3/27,

which is shown in Figure 2.12. This kind of equation (in which the

independent variable appears as a 3/2 power) is called a cusp; hence this

is called the cusp bifurcation or sometimes the cusp catastrophe (see

Connections).
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Now I want to discuss the solution in a more geometric manner,

because learning to think geometrically about these matters is abso-

lutely essential for your understanding of the material. The steady states

of the differential equation (2.32) satisfy x3%!x¼ ". In Figure 2.13a,

I plotted the curve y¼ x3%!x and the line (actually a number of lines)

y¼ ". Since the steady states correspond to values of x where these are

equal, we conclude that the steady states are values of x for which the

line and the curve intersect. We also see that there may be just one

intersection point (on the left hand branch of the curve or on the right
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Figure 2.12. A plot of the

equation "2¼4!3/27, which

is called a cusp. Along the

curves, there are two real

solutions of the cubic (and

thus three steady states of

Eq. (2.32)). Elsewhere, there

are either one real solution or

three real solutions.
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Figure 2.13. (a) The geometric solution of the equation x3%!x¼ ". (b) When we append dynamics for ", there is

no longer a steady state, but both x and " change in time.
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hand branch), there may be two intersection points (if the line is tangent

to the curve) or three intersection points (if the value of " falls between

the local maximum and local minimum of the curve). We thus have a

geometric interpretation of the cusp. When the horizontal line is tangent

to the curve, the system is once again structurally unstable: at the point

of tangency there are two steady states, one of which is marginally

stable. However, a small change in either of the parameters leads to a

situation in which there are either three or one steady states.

But this really is not the situation that I wanted to consider. Rather,

I want to consider the situation in which " varies as well. In particular, let

us append the equation d"/dt¼%"x, in which " is a new parameter, to

Eq. (2.32). We will assume that " is small (that is much less than 1), and

we know that when " is set equal to 0 we obtain the cusp bifurcation.

The steady state is now x¼ 0, "¼ 0, but the dynamics are very

interesting. To be explicit, suppose we start on the right hand branch of

the cubic, where the line is above the local maximum, as shown in

Figure 2.13b. If "were 0, the system would stay there. But since " is not

0, things change. In light of x> 0, " will decline (since its derivative

is negative). Thus in the next bit of time, the line will lower a little.

Furthermore, now the line is slightly below the cubic and since

dx/dt¼ "% (x3%!x), x declines slightly too. At this new value of x,

d"/dt is still negative, so that both " and x will continue to decline. We

will thus slowly move down along the right hand branch of the cubic

(Figure 2.13b). For how long will this go on? Until we reach the local

minimum of the cubic at x ¼
ffiffiffiffi
!
p

. At this point, " is still declining, but

once it does so there is no intersection between the line and the curve for

positive values of x. We thus predict a rapid transition from the right hand

branch of the cubic to the left hand branch. When we get near the left

hand branch, x is negative so that d"/dt is positive and " begins to rise.

Once again, this happens slowly, along the left hand branch, until the

local maximum is crossed, at which point there will be a rapid transition

back to the right hand branch of the cubic. In other words, we predict

oscillations, and that the oscillations will have a shape that involves a

slowly changing component and a rapidly changing component.

In Figure 2.14, I show the numerical solution of the differential

equations for the case in which !¼ 1, "¼ 0.005 with initial values

x(0)¼ 2 and "(0)¼ x(0)3%!x(0). Starting at x(0)¼ 2, we see a slow

decline along the right hand branch of the cubic, until there is a rapid

drop, then a slow rise, and oscillations set in. To help make this point

clearer, Figures 2.14b and c show just parts of the trajectory; in

Figure 2.14c, we most clearly see the slow and fast parts of the oscillation.

Oscillations such as the ones described here are called ‘‘relaxation

oscillations’’ and they arise in many different ecological contexts,
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typically in relationship to some kind of pest outbreak or plankton

bloom (see Connections).

Two dimensional differential equations and the
classification of steady states

Many of the models that we encounter in population biology involve

two or more differential equations of the form dx/dt¼ f (x, y) and
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Figure 2.14. The oscillations induced by allowing the parameter " to slowly change, as described in the text.

Three panels are shown, with increasingly fine resolution in time, so that we can clearly see the slow and fast parts

of the oscillatory system.
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dy/dt¼ g(x, y). Some examples are the Lotka–Volterra predator

(P)–prey (V ) equations

dV

dt
¼ rV 1% V

K

! "
% bPV

dP

dt
¼ cPV % mP

(2:33)

the Lotka–Volterra competition equations

dx

dt
¼ r1x 1% xþ !y

K1

! "

dy

dt
¼ r2y 1% yþ "x

K2

! " (2:34)

and equations that could describe a mutualistic interaction (for example

between ants and butterflies, see Pierce and Nash (1999) or Pierce et al.

(2002); for yuccas and moths see Pellmyr (2003))

dA

dt
¼ raA 1% A

K0 þ K1B

! "

dB

dt
¼ BðrbA% mBÞ

(2:35)

If these equations are not familiar to you, do not despair, but read on –

we shall explicitly consider the first two pairs in what follows.

When considering differential equations such as these in the plane,

one can usefully apply a three step procedure (which is generalized to

systems of higher dimension): understand the steady states, the quali-

tative dynamics, and only then the quantitative dynamics. We will

approach this procedure slowly, beginning with some very specific

examples and then ending with the general case.

We start with a specific example: consider the following system of

differential equations for a pair of variables u(t) and v(t) (don’t try to

ascribe biological meaning to them just now, that will come later on).

du

dt
¼ Au

dv

dt
¼ Dv

(2:36)

The choice of the constants A and D, which may be mysterious now,

will also become apparent later.

The steady states of this system are the values in the (u, v) plane

for which du/dt¼ 0 and dv/dt¼ 0. We can determine by inspection

that the only steady state is the origin (0, 0). Furthermore, we can

determine by inspection that u(t) and v(t) must be exponential functions

of time. Thus, we conclude that u(t)¼ u(0)eAt and that v(t)¼ v(0)eDt.
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(We could also note that du/dv¼Au/Dv, which integrates to Aln(u)¼
Dln(v)þ constant, and which then becomes u¼ cvA/D, where c is a

constant. But we are not going to make a big deal out of this because

it does not help us except in the special case).

What does help us, however, is to think about the exponential

solutions of time in a plane represented by u on the abscissa and v on

the ordinate. This is called the phase plane (Figure 2.15). We will

distinguish three cases. First suppose that A> 0 and D> 0. If we start

the system at u(0)¼ 0 and v(0)¼ 0, then it stays there forever. However,

if we start it anywhere else, both u(t) and v(t) grow in time. We say that

points in the u–v plane ‘‘flow away from the origin.’’ This is represented

by the arrows in Figure 2.15a pointing away from the origin. Note that

we are not trying to characterize the shape of those curves that represent

the flow away from the origin, just that points move away. We call this

an unstable node. Second, suppose that A< 0 and D< 0. Then every-

thing that we just concluded applies, but in reverse. If initial values are

not at the origin, they decline in time; we say that the flow is towards the

origin and that this is a stable node (Figure 2.15b). Third, suppose that

one of A or D is positive and that the other is negative. For concreteness,

I will do the case A< 0 and D> 0 and let you draw the picture for the

other one. Now some interesting things can happen. Note, if we start

exactly on the u-axis, we flow towards the origin. If we start exactly on

the v-axis, we flow away from the origin. For any starting point with

u(0) 6¼ 0 and v(0) 6¼ 0 but close to the origin, we will first flow towards

the origin, kind of ‘‘along the u-axis’’ and then flow away from it ‘‘along

the v-axis.’’ So we see that the u-axis separates the plane into two

regions; these are often called domains of attraction and the u-axis is

called the separatrix. In this case the origin is called a saddle point

(Figure 2.15c), in analogy to real saddles (Figure 2.15d) in which one

falls into the middle of the saddle moving along the back of the horse but

off the saddle moving laterally to the back of the horse.

This case was nice, but perhaps a bit too simple because the

dynamics of u and v were not connected in any way. The next most

complicated case would be linear, but with connection. Here we will go

back to x and y and write

dx

dt
¼ Axþ By

dy

dt
¼ Cxþ Dy

(2:37)

and now I hope you understand my choice of A and D in the previous

discussion. How could we analyze these equations? We might try to

find some combination of x and y so that new variables u¼!xþ "y and

v¼ #xþ $y satisfy du/dt¼A0u and dv/dt¼B0v for some constants
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Figure 2.15. The phase plane for the simple dynamical system du/dt¼Au, dv/dt¼Dv. If A and D are both greater

than 0, the origin is an unstable node (panel a). If A and D are both less than 0, the origin is a stable node (panel b).

If one of A or D is positive and the other is negative, the origin is called a saddle point (panel c), in analogy with

actual saddles (panel d; compliments of Gabby Roitberg).
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A0 and B0. Rather than doing that, we will try to generalize what we

have already learned.

I will now show two different ways to get to the same answer.

The first method is completely independent of anything outside of

this book. The second requires that you know a bit of linear algebra.

The first method proceeds as follows. We differentiate the first equation

in Eq. (2.37) with respect to time to obtain d2x/dt2¼A(dx/dt)þ
B(dy/dt)¼A(dx/dt)þB(CxþDy). Now we use the first equation in

(2.37) once again, by noting that y¼ (1/B)[(dx/dt)%Ax]. Combining

these, we obtain a single, second order differential equation for x(t).

Exercise 2.9 (E)

Show that when we combine the last two equations, we obtain

d2x

dt2
% ðAþ DÞdx

dt
þ ðAD% BCÞx ¼ 0 (2:38)

Now, before discussing the solution of this equation, let us think

about some of its properties. Since this is a second order differential

equation, two constants of integration will appear in the solution.

These are called the initial conditions. For the original system, we

might specify x(0) and y(0) (for example, two population sizes), but

for Eq. (2.38) we might specify x(0) and dx/dtjt¼0 (these are an

analogous specification since we know that y ¼ ð1=BÞ dx=dtð Þ % Ax½ *).
Because of the integration constants, there will be many different

solutions of Eq. (2.38). The next exercise, which is called the linear

superposition of solutions, will be extremely useful for the rest of

the chapter.

Exercise 2.10 (E/M)

Suppose that x1(t) and x2(t) are solutions of Eq. (2.38). (That is, each of them

satisfies the differential equation.) Show that X(t)¼ ax1(t)þ bx2(t), where a and

b are constants, is also a solution of Eq. (2.38).

We still have to deal with the matter of finding the solution of

Eq. (2.38). We know that a first order linear differential equation of

the form dx/dt¼Ax has exponential solutions, so let’s guess that the

solution of Eq. (2.38) has the form x(t)¼ x0elt where x0 is a constant

(corresponding to the initial value of x) and we need to find l. If we

accept this guess, then the derivatives of x(t) are dx/dt¼ lx0elt and

d2x/dt2¼ l2x0elt. When we substitute these forms for x(t) and its two

derivatives back into Eq. (2.38), note that both x0 and elt will cancel
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since they appear in all of the terms. We are then left with a quadratic

equation for the parameter l:

l2 % ðAþ DÞlþ AD% BC ¼ 0 (2:39)

Before interpreting Eq. (2.39), I will show a different way to reach it.

For this second method, let us assume that there are certain special

initial values of x(0)¼ u and y(0)¼ v such that x(t)¼ uelt and y(t)¼ velt.

Note that these are clearly not the u and v with which we started this

section. I use them here because in life we are symbol-limited. Given

this form for x(t) and y(t) the derivatives are dx/dt¼ luelt¼ lx(t) and

dy/dt¼ lvelt¼ ly(t). For this reason, l is called an eigenvalue (from the

German word ‘‘eigen’’ meaning similar or equivalent) of the differential

equations (2.37) because when we take the derivatives of x(t) and y(t)

we get back multiples of x(t) and y(t). In a geometrical way, we can think

of a vector that joins the origin and the point (u, v); it is called the

eigenvector, for much the same reason.

Now we substitute these derivatives into Eq. (2.37). Once again, the

exponential terms cancel and when we combine terms we obtain

ðA% lÞuþ Bv ¼ 0

Cuþ ðD% lÞv ¼ 0
(2:40)

One solution of these linear algebraic equations is u¼ v¼ 0. For

there to be other solutions, we recall that the determinant of the coeffi-

cients of u and v must be equal to 0. That is

A% l B
C D% l

****

**** ¼ 0 (2:41)

and when we apply the rule for determinants (i.e. that Eq. (2.41) is

equivalent to (A% l)(D% l)%BC¼ 0) we obtain the same equation for

l, Eq. (2.39).

Equation (2.39) is a quadratic equation, so that we know there are

two solutions, given by the quadratic formula. We will denote these

solutions by l1,2 and they are

l1;2 ¼
ðAþ DÞ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ DÞ2 % 4ðAD% BCÞ

q

2

¼
ðAþ DÞ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA% DÞ2 þ 4BC

q

2

(2:42)

where, for convention, we will assume that 1 corresponds toþ and

2 to – in the quadratic formula. If we define the discriminant by

D¼ (A%D)2þ 4BC, then we can write that l1;2 ¼
+
ðAþ DÞ +

ffiffiffiffi
D
p ,

=2.
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We are now able to classify the steady state (0, 0) of the system given in

Eq. (2.37). Before doing that, let’s have a brief interlude.

Exercise 2.11 (M)

Show that if l is a solution of Eq. (2.42) and that if we set u¼B and v¼ l%A

that Eq. (2.40) is satisfied. Thus, we know how to find the eigenvectors too.

As long as D 6¼ 0, which we will assume in this chapter, the exer-

cises up to this point have allowed us to find the general solution of the

system given by Eq. (2.37):

xðtÞ ¼ c1Bel1 t þ c2Bel2t

yðtÞ ¼ c1ðl1 % AÞel1t þ c2ðl2 % AÞel2t
(2:43)

Although it is nice to have an explicit form for the solution, what is nicer

is that we now know how to classify the steady state.

We begin with the case in which D> 0. Then both of the eigen-

values are real. We conclude that if they are both positive, the origin is

an unstable node. Since solutions will grow exponentially, whichever

eigenvalue is larger will ultimately dominate the behavior of the solu-

tion. If both of the eigenvalues are negative, we conclude that the origin

is a stable node. If one of the eigenvalues is positive and the other is

negative, we conclude that the origin is a saddle point.

When D< 0, the eigenvalues are complex numbers, so if we set

q ¼
ffiffiffiffiffiffi
jDj

p
we can rewrite the eigenvalues as l1,2¼ [(AþD)+ iq]/2,

where i ¼
ffiffiffiffiffiffiffi
%1
p

. Consequently, when we compute solutions given by

Eq. (2.43), we will need to consider expressions of the form

exp
ðAþ DÞt þ iqt

2

! "
¼ exp

ðAþ DÞt
2

! "
exp

iqt

2

! "

From this, we see that if AþD, the real part of the eigenvalues, is

negative, then whatever else happens solutions will decline in time. If

AþD is positive, they will grow in time. The question then becomes

how we interpret the exponential of iqt.

For this interpretation, we need a brief reminder. Recall that the

solution of the differential equation d2x/dt2¼%kx involves sines or

cosines. (If you do not recall this, confirm that if x ¼ sinð
ffiffiffiffi
kt
p
Þ or

x ¼ cosð
ffiffiffiffi
kt
p
Þ then the differential equation is satisfied.) Since this

is a linear equation, the general solution must be of the form

c1 sinð
ffiffiffi
k
p

tÞ þ c2 cosð
ffiffiffi
k
p

tÞ, where the ci are constants. Suppose that

we had guessed an exponential solution for this equation, i.e. that

x¼ celt. In this case, the second derivative of x(t) is cl2elt so that we

conclude l must satisfy the equation l2¼%k or that l ¼ +i
ffiffiffi
k
p

. In

other words, exponentials involving
ffiffiffiffiffiffiffi
%1
p

lead to oscillations. Our
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solution is at hand. If D< 0, we now know that the solutions will

oscillate. Such a steady state is called a focus or a spiral point. If

AþD< 0, the focus is stable and if AþD> 0 the focus is unstable.

But, of course, all this work (and it is hard work) only corresponds

to the linear system of equations (2.37) and the equations that we

actually encounter in population biology are nonlinear. What do we

do about this? That is, in general we will have a pair of differential

equations of the form

dx

dt
¼ f ðx; yÞ

dy

dt
¼ gðx; yÞ

(2:44)

and let us suppose that the point (xs, ys) is a steady state of this system so

that f (xs, ys)¼ g(xs, ys)¼ 0. We go forward from Eq. (2.44) by linear-

izing the equations around the steady state. That is, we write

xðtÞ ¼ xs þ ~xðtÞ and that yðtÞ ¼ ys þ ~yðtÞ so that ~xðtÞ and ~yðtÞ measure

the deviations from the steady state. Since the steady states are constant,

we know that dx=dt ¼ d~x=dt and dy=dt ¼ d~y=dt. Now we will Taylor

expand f (x, y) around the steady state and keep only the linear term:

f ðx; yÞ ' f ðxs þ ~x; ys þ ~yÞ

¼ f ðxs; ysÞ þ
q
qx

f ðx; yÞjðxs;ysÞ~xþ
q
qy

f ðx; yÞjðxs;ysÞ~y
(2:45)

Now let us consider the three terms in the right hand expression of this

equation. The first term on the right hand side is identically zero,

because (xs, ys) is a steady state. The second term is the partial derivative

of f (x, y) with respect to x, evaluated at the steady state. To help simplify

what we have to write, we will use subscripts for partial derivatives and,

with a slight abuse of notation, replace the second and third terms on

the right hand side of Eq. (2.45) by f xðxs; ysÞ~x and f yðxs; ysÞ~y. A similar

argument shows that gðx; yÞ ' gxðxs; ysÞ~xþ gyðxs; ysÞ~y. The point of all

this work is that we can now replace the nonlinear differential equa-

tion (2.44) by a linear system that characterizes the deviations from the

steady state

d~x

dt
¼ f xðxs; ysÞ~xþ f yðxs; ysÞ~y

d~y

dt
¼ gxðxs; ysÞ~xþ gyðxs; ysÞ~y

(2:46)

and we now compare Eq. (2.46) with Eq. (2.37) to determine the values

of A, B, C, and D (note that they are not arbitrary but must match the

various partial derivatives in Eq. (2.46)), from which we can determine

the stability characteristics of the steady states.
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To help make the preceding more concrete, we will first consider

an example, then an exercise. A very simple model for competition

between two types or species x(t) and y(t) is

dx

dt
¼ xð1þ a% x% ayÞ

dy

dt
¼ yð1þ a% y% axÞ

(2:47)

where a is a parameter, which we assume to be positive. From the form

of these equations, we see that the presence of x increases the rate of

change of x and that the presence of both x and y decreases the rate of

change of x (and vice versa for y). We say that x and y are auto-catalysts

for themselves and anti-catalysts for the other type. This thinking

underlay the work of Sir F. C. Frank in his study of spontaneous

asymmetric synthesis (see Connections); Eq. (2.47) is also a simple

analog of the Lotka–Volterra competition equations, in which the

competition is symmetric.

We find the steady states of Eq. (2.47) by setting dx/dt¼ 0 and

dy/dt¼ 0. For the former, we find that x¼ 0 or xþ ay¼ 1þ a. For the

latter, we find that y¼ 0 or yþ ax¼ 1þ a. Thus, (1, 1) is a steady state.

Before conducting an eigenvalue analysis, we use the isoclines (or

more properly, the nullclines, lines on which dx/dt¼ 0 or dy/dt¼ 0)

of the differential equations to understand properties of the solution.

These are shown in Figure 2.16. The steady state (1, 1) can be either

a node (if a< 1) or a saddle point (if a> 1). When a¼ 1, the two

isoclines sit on top of each other and the system is structurally

unstable. Note also that, because x and y are interchangeable in the

two equations, the line y¼ x is a solution of the equations – points on

the line y¼ x move towards (1, 1), regardless of whether it is a node

or a saddle point.

We can now conduct the eigenvalue analysis. In this case f (x,y)¼
x(1þ a% x% ay)¼ x(1þ a)% x2% axy and g(x, y)¼ y(1þ a)% y2%
axy. The partial derivatives are thus fx¼ 1þ a% 2x% ay, fy¼%ax,

gx¼%ay, and gy¼ 1þ a% 2y% ax, and we evaluate these at (1, 1)

in order to obtain A, B, C, and D, so that A¼ 1þ a% 2% a¼%1,

B¼%a, C¼%a, and D¼ 1þ a% 2% a¼%1. We substitute this into

Eq. (2.42) and find that l1;2 ¼ %1+
ffiffiffi
a
p

. From the eigenvalue analysis,

we reach the same conclusion as from the phase plane analysis – that

(1, 1) is either a stable node or saddle point, depending upon the value of

a. Thus, in this case, the eigenvalue analysis told us little that we could

not understand from the phase plane. Here’s an example where it tells us

much more.
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Exercise 2.12 (M!H)

Consider the following predator (P)–prey (V ) system

dV

dt
¼ rV 1% V

K

! "
% bPV

dP

dt
¼ cPV % mP

Assume that the biomass of each is measured in numbers of individuals (but

treated as a continuous variable) and time is measured in years. It might be

helpful for what follows to think of rabbits and foxes as the victims and

predators. It might also be helpful, especially for parts (a) and (b), to convert

to per capita growth rates. (a) What are the units of all the parameters?

(b) Interpret the biology of both predator and prey. What must be true about

the relationship between b and c if the system is mammalian predators such as

rabbits and foxes? (c) Conduct an isocline analysis. Note: there are two cases,

depending upon the relationship between K and m/c. Be sure to get both of them

and carefully think about what each means. (d) Classify the steady states of the

system according to their eigenvalues. What does the eigenvalue calculation tell

you that the isocline analysis did not? Once again, there are two cases that

require careful interpretation. (e) What happens to the eigenvalues as K!1?

y

x

dx
dt

�  0

1 + a

1 + a

1 + a
a

1 + a
a

x = y

dy
dt

= 0

(c) a �  1

1 + a

1 + a

1 + a
a

1 + a
a

y

x 

x = y
dy
dt

= 0

dx
dt = 0

(d) a �  1

y

x

dx
dt

�  0

dx
dt

�  0

1 + a

1 + a
a

(a)

x

y
dy
dt

dy
dt

1 + a

1 + a
a

(b)

�  0

�  0

Figure 2.16. The isocline

analysis of the equations for

spontaneous asymmetric

synthesis/symmetric

competition. In panels (a) and

(b), I show the separate

isoclines for dx/dt¼0 and

dy/dt¼0 and the flow of

points in the phase plane.

When these are put together,

the resulting phase plane

shows either a stable node at

(1,1) (panel c) or a saddle point

(panel d).
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