
Chapter 1

Four examples and a metaphor

Robert Peters (Peters 1991) – who (like Robert MacArthur) tragically

died much too young – told us that theory is going beyond the data.

I thoroughly subscribe to this definition, and it shades my perspective

on theoretical biology (Figure 1.1). That is, theoretical biology begins

with the natural world, which we want to understand. By thinking about

observations of the world, we conceive an idea about how it works. This

is theory, and may already lead to predictions, which can then flow back

into our observations of the world. Theory can be formalized using

mathematical models that describe appropriate variables and processes.

The analysis of such models then provides another level of predictions

which we take back to the world (from which new observations may

flow). In some cases, analysis may be insufficient and we implement the

models using computers through programming (software engineering).

These programs may then provide another level of prediction, which

can flow back to the models or to the natural world. Thus, in biology

there can be many kinds of theory. Indeed, without a doubt the greatest

theoretician of biology was Charles Darwin, who went beyond the data

by amassing an enormous amount of information on artificial selection

and then using it to make inferences about natural selection. (Second

place could be disputed, but I vote for Francis Crick.) Does one have to

be a great naturalist to be a theoretical biologist? No, but the more you

know about nature – broadly defined (my friend Tim Moerland at

Florida State University talks with his students about the ecology of

the cell (Moerland 1995)) – the better off you’ll be. (There are some

people who will say that the converse is true, and I expect that they

won’t like this book.) The same is true, of course, for being able to
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develop models and implementing them on the computer (although, I

will tell you flat out right now that I am not a very good programmer –

just sufficient to get the job done). This book is about the middle of

those three boxes in Figure 1.1 and the objective here is to get you to be

good at converting an idea to a model and analyzing the model (we will

discuss below what it means to be good at this, in the same way as what

it means to be good at opera).

On January 15, 2003, just as I started to write this book, I attended a

celebration in honor of the 80th birthday of Professor Joseph B. Keller.

Keller is one of the premier applied mathematicians of the twentieth

century. I first met him in the early 1970s, when I was a graduate

student. At that time, among other things, he was working on mathe-

matics applied to sports (see, for example, Keller (1974)). Joe is fond of

saying that when mathematics interacts with science, the interaction is

fruitful if mathematics gives something to science and the science gives

something to mathematics in return. In the case of sports, he said that

what mathematics gained was the concept of the warm-up. As with

athletics, before embarking on sustained and difficult mathematical

exercise, it is wise to warm-up with easier things. Most of this chapter

is warm-up. We shall consider four examples, arising in behavioral and

evolutionary ecology, that use algebra, plane geometry, calculus, and a

tiny bit of advanced calculus. After that, we will turn to two metaphors

about this material, and how it can be learned and used.

Foraging in patchy environments

Some classic results in behavioral ecology (Stephens and Krebs 1986,

Mangel and Clark 1988, Clark and Mangel 2000) are obtained in the
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Figure 1.1. Theoretical biology

begins with the natural world,

which we want to understand.

By thinking about observations

of the world, we begin to

conceive an idea about how it

works. This is theory, and may

already lead to predictions,

which can then flow back into

our observations of the world.

The idea about how the world

works can also be formalized

using mathematical models

that describe appropriate

variables and processes. The

analysis of such models then

provides another level of

predictions which we can take

back to the world (from which

new observations may flow).

In some cases, analysis may

be insufficient and we choose

to implement our models

using computers through

programming (software

engineering). These programs

then provide another level of

prediction, which can also flow

back to the models or to the

natural world.
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study of organisms foraging for food in a patchy environment

(Figure 1.2). In one extreme, the food might be distributed as individual

items (e.g. worms or nuts) spread over the foraging habitat. In another,

the food might be concentrated in patches, with no food between the

patches. We begin with the former case.

The two prey diet choice problem (algebra)

We begin by assuming that there are only two kinds of prey items (as

you will see, the ideas are easily generalized), which are indexed by

i¼ 1, 2. These prey are characterized by the net energy gain Ei from

consuming a single prey item of type i, the time hi that it takes to handle

(capture and consume) a single prey item of type i, and the rate li at

which prey items of type i are encountered. The profitability of a single

prey item is Ei/hi since it measures the rate at which energy is accumu-

lated when a single prey item is consumed; we will assume that prey

(a) (b)

(c)

Figure 1.2. Two stars of foraging experiments are (a) the great tit, Parus major, and (b) the common starling Sturnus

vulgaris (compliments of Alex Kacelnik, University of Oxford). (c) Foraging seabirds on New Brighton Beach,

California, face diet choice and patch leaving problems.
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type 1 is more profitable than prey type 2. Consider a long period of

time T in which the only thing that the forager does is look for prey

items. We ask: what is the best way to consume prey? Since I know the

answer that is coming, we will consider only two cases (but you might

want to think about alternatives as you read along). Either the forager

eats whatever it encounters (is said to generalize) or it only eats prey

type 1, rejecting prey type 2 whenever this type is encountered (is said

to specialize). Since the flow of energy to organisms is a fundamental

biological consideration, we will assume that the overall rate of energy

acquisition is a proxy for Darwinian fitness (i.e. a proxy for the long

term number of descendants).

In such a case, the total time period can be divided into time spent

searching, S, and time spent handling prey, H. We begin by calculating

the rate of energy acquisition when the forager specializes. In search

time S, the number of prey items encountered will be l1S and the time

required to handle these prey items is H¼ h1(l1S ). According to our

assumption, the only things that the forager does is search and handle

prey items, so that T¼ SþH or

T ¼ S þ h1l1 S ¼ Sð1þ l1h1Þ (1:1)

We now solve this equation for the time spent searching, as a

fraction of the total time available and obtain

S ¼ T

1þ l1h1
(1:2)

Since the number of prey items encountered is l1S and each item

provides net energy E1, the total energy from specializing is E1l1S, and

the rate of acquisition of energy will be the total accumulated energy

divided by T. Thus, the rate of gain of energy from specializing is

Rs ¼
E1l1

1þ h1l1
(1:3)

An aside: the importance of exercises

Consistent with the notion of mathematics in sport, you are developing a

set of skills by reading this book. The only way to get better at skills is

by practice. Throughout the book, I give exercises – these are basically

steps of analysis that I leave for you to do, rather than doing them here.

You should do them. As you will see when reading this book, there is

hardly ever a case in which I write ‘‘it can be shown’’ – the point of this

material is to learn how to show it. So, take the exercises as they come –

in general they should require no more than a few sheets of paper – and

really make an effort to do them. To give you an idea of the difficulty of
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exercises, I parenthetically indicate whether they are easy (E), of med-

ium difficulty (M), or hard (H).

Exercise 1.1 (E)

Repeat the process that we followed above, for the case in which the forager

generalizes and thus eats either prey item upon encounter. Show that the rate of

flow of energy when generalizing is

Rg ¼
E1l1 þ E2l2

1þ h1l1 þ h2l2
(1:4)

We are now in a position to predict the best option: the forager is

predicted to specialize when the flow of energy from specializing is greater

than the flow of energy from generalizing. This will occur when Rs>Rg.

Exercise 1.2 (E)

Show that Rs>Rg implies that

l1 >
E2

E1h2 % E2h1
(1:5)

Equation (1.5) defines a ‘‘switching value’’ for the encounter rate

with the more profitable prey item, since as l1 increases from below to

above this value, the behavior switches from generalizing to speciali-

zing. Equation (1.5) has two important implications. First, we predict

that the foraging behavior is ‘‘knife-edge’’ – that there will be no partial

preferences. (To some extent, this is a result of the assumptions. So if

you are uncomfortable with this conclusion, repeat the analysis thus far

in which the forager chooses prey type 2 a certain fraction of the time, p,

upon encounter and compute the rate Rp associated with this assumption.)

Second, the behavior is determined solely by the encounter rate with the

more profitable prey item since the encounter rate with the less profitable

prey item does not appear in the expression for the switching value.

Neither of these could have been predicted a priori.

Over the years, there have been many tests of this model, and much

disagreement about what these tests mean (more on that below). My

opinion is that the model is an excellent starting point, given the simple

assumptions (more on these below, too).

The marginal value theorem (plane geometry)

We now turn to the second foraging model, in which the world is assumed

to consist of a large number of identical and exhaustible patches contain-

ing only one kind of food with the same travel time between them
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Figure 1.3. (a) A schematic of the situation for which the marginal value theorem applies. Patches of food

(represented here in metaphor by filled or empty patches) are exhaustible (but there is a very large number of them)

and separated by travel time ! . (b) An example of a gain curve (here I used the function G(t)¼ t/(tþ3), and (c) the

resulting rate of gain of energy from this gain curve when the travel time ! ¼3. (d) The marginal value construction

using a tangent line.
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(Figure 1.3a). The question is different: the choice that the forager faces is

how long to stay in the patch. We will call this the patch residence time,

and denote it by t. The energetic value of food removed by the forager

when the residence time is t is denoted by G(t). Clearly G(0)¼ 0 (since

nothing can be gained when no time is spent in the patch). Since the patch

is exhaustible, G(t) must plateau as t increases. Time for a pause.

Exercise 1.3 (E)

One of the biggest difficulties in this kind of work is getting intuition about

functional forms of equations for use in models and learning how to pick them

appropriately. Colin Clark and I talk about this a bit in our book (Clark and

Mangel 2000). Two possible forms for the gain function are G(t)¼ at/(bþ t) and

G(t)¼ at2/(bþ t2). Take some time before reading on and either sketch these

functions or pick values for a and b and graph them. Think about what the

differences in the shapes mean. Also note that I used the same constants (a and

b) in the expressions, but they clearly must have different meanings. Think

about this and remember that we will be measuring gain in energy units (e.g.

kilocalories) and time in some natural unit (e.g. minutes). What does this imply

for the units of a and b, in each expression?

Back to work. Suppose that the travel time between the patches

is ! . The problem that the forager faces is the choice of residence in the

patch – how long to stay (alternatively, should I stay or should I go

now?). To predict the patch residence time, we proceed as follows.

Envision a foraging cycle that consists of arrival at a patch, resi-

dence (and foraging) for time t and then travel to the next patch, after

which the process begins again. The total time associated with one

feeding cycle is thus tþ ! and the gain from that cycle is G(t), so that

the rate of gain is R(t)¼G(t)/(tþ !). In Figure 1.3, I also show an

example of a gain function (panel b) and the rate of gain function

(panel c). Because the gain function reaches a plateau, the rate of gain

has a peak. For residence times to the left of the peak, the forager is

leaving too soon and for residence times to the right of the peak the

forager is remaining too long to optimize the rate of gain of energy.

The question is then: how do we find the location of the peak, given

the gain function and a travel time? One could, of course, recognize that

R(t) is a function of time, depending upon the constant ! and use

calculus to find the residence time that maximizes R(t), but I promised

plane geometry in this warm-up. We now proceed to repeat a remark-

able construction done by Eric Charnov (Charnov 1976). We begin by

recognizing that R(t) can be written as

RðtÞ ¼ GðtÞ
t þ !

¼ GðtÞ % 0

t % ð%!Þ
(1:6)
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and that the right hand side can be interpreted as the slope of the line that

joins the point (t, G(t)) on the gain curve with the point (%! , 0) on the

abscissa (x-axis). In general (Figure 1.3d), the line between (%! , 0) and

the curve will intersect the curve twice, but as the slope of the line

increases the points of intersection come closer together, until they meld

when the line is tangent to the curve. From this point of tangency, we

can read down the optimal residence time. Charnov called this the

marginal value theorem, because of analogies in economics. It allows

us to predict residence times in a wide variety of situations (see the

Connections at the end of this chapter for more details).

Egg size in Atlantic salmon and parent–offspring
conflict (calculus)

We now come to an example of great generality – predicting the size of

propagules of reproducing individuals – done in the context of a specific

system, the Atlantic salmon Salmo salar L. (Einum and Fleming 2000).

As with most but not all fish, female Atlantic salmon lay eggs and the

resources they deposit in an egg will support the offspring in the initial

period after hatching, as it develops the skills needed for feeding itself

(Figure 1.4). In general, larger eggs will improve the chances of off-

spring survival, but at a somewhat decreasing effect. We will let x

denote the mass of a single egg and S(x) the survival of an offspring

through the critical period of time (Einum and Fleming used both 28 and

107 days with similar results) when egg mass is x. Einum and Fleming

chose to model S(x) by

SðxÞ ¼ 1% xmin

x

! "a

(1:7)

where xmin¼ 0.0676 g and a¼ 1.5066 are parameters fit to the data.

We will define c¼ (xmin)a so that S(x)¼ 1% cx%a, understanding that

S(x)¼ 0 for values of x less than the minimum size. This function is

shown in Figure 1.5a; it is an increasing function of egg mass, but has a

decreasing slope. Even so, from the offspring perspective, larger eggs

are better.

However, the perspective of the mother is different because she has

a finite amount of gonads to convert into eggs (in the experiments of

Einum and Fleming, the average female gonadal mass was 450 g).

Given gonadal mass g, a mother who produces eggs of mass x will

make g/x eggs, so that her reproductive success (defined as the expected

number of eggs surviving the critical period) will be

Rðg; xÞ ¼ g

x
SðxÞ ¼ g

x
ð1% cx%aÞ (1:8)
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and we can find the optimal egg size by setting the derivative of R(g, x)

with respect to x equal to 0 and solving for x.

Exercise 1.4 (M)

Show that the optimal egg size based on Eq. (1.8) is xopt ¼ fcðaþ 1Þg1=a and

for the values from Einum and Fleming that this is 0.1244 g. For comparison, the

observed egg size in their experiments was about 0.12 g.

(c)

(b)(a) Figure 1.4. (a) Eggs, (b) a nest,

and (c) a juvenile Atlantic

salmon – stars of the

computation of Einum and

Fleming on optimal egg size.

Photos complements of Ian

Fleming and Neil Metcalfe.
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In Figure 1.5b, I show R(450, x) as a function of x; we see the peak

very clearly. We also see a source of parent–offspring conflict: from the

perspective of the mother, an intermediate egg size is best – individual

offspring have a smaller chance of survival, but she is able to make more

of them. Since she is making the eggs, this is a case of parent–offspring

conflict that the mother wins with certainty.

A calculation similar to this one was done by Heath et al. (2003), in

their study of the evolution of egg size in Atlantic salmon.

Extraordinary sex ratio (more calculus)

We now turn to one of the most important contributions to evolutionary

biology (and ecology) in the last half of the twentieth century; this is

the thinking by W. D. Hamilton leading to understanding extraordinary

sex ratios. There are two starting points. The first is the argument by

R. A. Fisher that sex ratio should generally be about 50:50 (Fisher

1930): imagine a population in which the sex ratio is biased, say towards

males. Then an individual carrying genes that will lead to more daugh-

ters will have higher long term representation in the population, hence

bringing the sex ratio back into balance. The same argument applies if

the sex ratio is biased towards females. The second starting point is the

observation that in many species of insects, especially the parasitic

wasps (you’ll see some pictures of these animals in Chapter 4), the
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Figure 1.5. (a) Offspring survival as a function of egg mass for Atlantic salmon. (b) Female reproductive success for

an individual with 450 g of gonads.
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sex ratio is highly biased towards females, in apparent contradiction to

Fisher’s argument.

The parasitic wasps are wonderfully interesting animals and under-

standing a bit about their biology is essential to the arguments that

follow. If you find this brief description interesting, there is no better

place to look for more than in the marvelous book by Charles Godfray

(Godfray 1994). In general, the genetic system is haplo-diploid, in

which males emerge from unfertilized eggs and females emerge from

fertilized eggs. Eggs are laid on or in the eggs, larvae or adults of other

insects; the parasitoid eggs hatch, offspring burrow into the host if

necessary, and use the host for the resources necessary to complete

development. Upon completing development, offspring emerge from

the wreck that was once the host, mate and fly off to seek other hosts and

the process repeats itself. In general, more than one, and sometimes

many females will lay their eggs at a single host. Our goal is to under-

stand the properties of this reproductive system that lead to sex ratios

that can be highly female biased.

Hamilton’s approach (Hamilton 1967) gave us the idea of an

‘‘unbeatable’’ or non-invadable sex ratio, from which many develop-

ments in evolutionary biology flowed. The paper is republished in a

book that is well worth owning (Hamilton 1995) because in addition to

containing 15 classic papers in evolutionary ecology, each paper is

preceded by an essay that Hamilton wrote about the paper, putting it

in context.

Imagine a population that consists of Nþ 1 individuals, who are

identical in every way except that N of them (called ‘‘normal’’ indi-

viduals) make a fraction of sons r& and one of them (called the

‘‘mutant’’ individual) makes a fraction of sons r. We will say that

the normal sex ratio r& is unbeatable if the best thing that the mutant

can do is to adopt the same strategy herself. (This is an approximate

definition of an Evolutionarily Stable Strategy (ESS), but misses a

few caveats – see Connections). To find r&, we will compute the fitness

of the mutant given both r and r&, then choose the mutant strategy

appropriately.

In general, fitness is measured by the long term number of descen-

dants (or more specifically the genes carried by them). As a proxy for

fitness, we will use the number of grand offspring produced by the

mutant female (grand offspring are a convenient proxy in this case

because once the female oviposits and leaves a host, there is little that

she can do to affect the future representation of her genes).

A female obtains grand offspring from both her daughters and her

sons. We will assume that all of the daughters of the mutant female are

fertilized, that her sons compete with the sons of normal females for

Extraordinary sex ratio (more calculus) 11



matings, and that every female in the population makes E eggs. Then the

number of daughters made by the mutant female is E(1% r) and the

number of grand offspring from these daughters is E2(1% r). Similarly,

the total number of daughters at the host will be E(1% r)þNE(1% r&),

so that the number of grand offspring from all daughters is

E2{1% rþN(1% r&)}. However, the mutant female will be credited

with only a fraction of those offspring, according to the fraction of her

sons in the population. Since she makes Er sons and the normal indivi-

duals make NEr& sons, the fraction of sons that belong to the mutant is

Er/(ErþNEr&). Consequently, the fitness W(r, r&), depending upon the

sex ratio r that the female uses and the sex ratio r& that other females use,

from both daughters and sons is

Wðr; r&Þ ¼ E2ð1% rÞ þ E2fð1% rÞ þ Nð1% r&Þg r

r þ Nr&

# $
(1:9)

The strategy r& will be ‘‘unbeatable’’ (or ‘‘uninvadable’’) if the best sex

ratio for the mutant to choose is r&; as a function of r, W(r, r&) is

maximized when r¼ r&. We thus obtain a procedure for computing

the unbeatable sex ratio: (1) take the partial derivative of W(r, r&) with

respect to r; (2) set r¼ r& and the derivative equal to 0; and (3) solve

for r&.

Exercise 1.5 (M)

Show that the unbeatable sex ratio is r& ¼N/2(Nþ 1).

Let us interpret this equation. When N!1, r&! 1/2; this is under-

standable and consistent with Fisherian sex ratios. As the population

becomes increasingly large, the assumptions underlying Fisher’s argu-

ment are met. How about the limit as N! 0? Formally, the limit as

N! 0 is r& ¼ 0, but this must be biologically meaningless. When N¼ 0,

the mutant female is the only one ovipositing at a host. If she makes

no sons, then none of her daughters will be fertilized. How are we to

interpret the result? One way is this: if she is the only ovipositing

female, then she is predicted to lay enough male eggs to ensure that all

of her daughters are fertilized (one son may be enough). To be sure, there

are lots of biological details missing here (see Connections), but the basic

explanation of extraordinary sex ratios has stood the test of time.

Two metaphors

You should be warmed up now, ready to begin the serious work.

Before doing so, I want to share two metaphors about the material in

this book.
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Black and Decker

Black and Decker is a company that manufactures various kinds of

tools. In Figure 1.6, I show some of the tools of my friend Marv Guthrie,

retired Director of the Patent and Technology Licensing Office at

Massachusetts General Hospital and wood-worker and sculptor.

Notice that Marv has a variety of saws, pliers, hammers, screwdrivers

and the like. We are to draw three conclusions from this collection.

First, one tool cannot serve all needs; that is why there are a variety of

saws, pliers, and screwdrivers in his collection. (Indeed, many of you

probably know the saying ‘‘When the only tool you have is a hammer,

everything looks like a nail’’.) Similarly, we need a variety of tools in

ecology and evolutionary biology because one tool cannot solve all the

problems that we face.

Second, if you know how to use one kind of screwdriver, then you

will almost surely understand how other kinds of screwdrivers are used.

Indeed, somebody could show a new kind of screwdriver to you, and

you would probably be able to figure it out. Similarly, the goal in this

book is not to introduce you to every tool that could be used in ecology

and evolutionary biology. Rather, the point is to give you enough

understanding of key tools so that you can recognize (and perhaps

develop) other ones.

Third, none of us has envisioned all possible uses of any tool – but

understanding how a tool is used allows us to see new ways to use it. The

same is true for the material in this book: by deeply understanding some

of the ways in which these tools are used, you will be able to discover

new ways to use them. So, there will be places in the book where I will

Figure 1.6. The tools of my

friend Marv Guthrie; such tools

are one metaphor for the

material in this book.
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set up a situation in which a certain tool could be used, but will not go

into detail about it because we’ve already have sufficient exposure to

that tool (sufficient, at least for this book; as with physical tools, the

more you use these tools, the better you get at using them).

Fourth, a toolbox does not contain every possible tool. The same is

true of this book – a variety of tools are missing. The main tools missing

are game theoretical methods and partial differential equation models

for structured populations. Knowing what is in here well, however, will

help you master those tools when you need them.

There is one tool that I will not discuss in detail but which is equally

important: what applies to mathematical methods also applies to writ-

ing, once you have used the methods to solve a problem. The famous

statistician John Hammersley (Hammersley 1974), writing about the

use of statistics in decision-making and about statistical professionalism

says that the art of statistical advocacy ‘‘resides in one particular tool,

which we have not yet mentioned and which we too often ignore in

university courses on statistics. The tool is a clear prose style. It is,

without any doubt, the most important tool in the statistician’s toolbox’’

(p. 105). Hammersley offers two simple rules towards good prose style:

(1) use short words, and (2) use active verbs. During much of the time

that I was writing the first few drafts of this book, I read the collected

short stories of John Cheever (Cheever 1978) and it occurred to me that

writers of short stories face the same problems that we face when

writing scientific papers: in the space of 10 or so printed papers, we

need to introduce the reader to a world that he or she may not know

about and make new ideas substantial to the reader. So, it is probably

good to read short stories on a regular basis; the genre is less important.

Cheever, I might add, is a master of using simple prose effectively, as is

Victor Pritchett (Pritchett 1990a, b).

In his book On Writing (King 2000), Stephen King has an entire

section called ‘‘Toolbox’’, regarding which he says ‘‘I want to suggest

that to write to the best of your abilities, it behooves you to construct

your own toolbox and then build up enough muscle so that you can carry

it with you. Then, instead of looking at a hard job and getting discour-

aged, you will perhaps seize the correct tool and get immediately to

work’’ (p. 114). King also encourages everyone to read the classic

Elements of Style (Strunk and White 1979) by William Strunk and

E. B. White (of Charlotte’s Web and Stuart Little fame). I heartily

concur; if you think that you ever plan to write science – or anything

for that matter – you should own Strunk and White and re-read it

regularly. One of my favorite authors of fiction, Elizabeth George, has

a lovely small book on writing (George 2004) and emphasizes the same

when she writes: ‘‘that the more you know about your tools, the better
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you’ll be able to use them’’ (p. 158). She is speaking about the use of

words; the concept is more general.

Almost everyone reading this book will be interested in applying

mathematics to a problem in the natural world. Skorokhod et al. (2002)

describe the difference between pure and applied mathematics as this:

‘‘This book has its roots in two different areas of mathematics: pure

mathematics, where structures are discovered in the context of other

mathematical structures and investigated, and applications of mathe-

matics, where mathematical structures are suggested by real-world

problems arising in science and engineering, investigated, and then

used to address the motivating problem. While there are philosophical

differences between applied and pure mathematical scientists, it is often

difficult to sort them out.’’ (p. v).

In order to apply mathematics, you must be engaged in the world.

And this means that your writing must be of the sort that engages those

who are involved in the real world. Some years ago, I co-chaired the

strategic planning committee for UC Santa Cruz, sharing the job with

a historian, Gail Hershatter, who is a prize winning author (Hershatter

1997). We agreed to split the writing of the first draft of the report

evenly and because I had to travel, I sent my half to her before I had seen

any of her writing. I did this with trepidation, having heard for so many

years about C. P. Snow’s two cultures (Snow 1965). Well, I discovered

that Gail’s writing style (like her thinking style) and mine were com-

pletely compatible. She and I talked about this at length and we agreed

that there are indeed two cultures, but not those of C. P. Snow. There is

the culture of good thinking and good writing, and the culture of bad

thinking and bad writing. And as we all know from personal experience,

they transcend disciplinary boundaries. As hard as you work on mathe-

matical skills, you need to work on writing skills. This is only done,

Stephen King notes, by reading widely and constantly (and, of course, in

science we never know from where the next good idea will come – so

read especially widely and attend seminars).

Mean Joe Green

The second metaphor involves Mean Joe Green. At first, one might

think that I intend Mean Joe Greene, the hall of fame defensive tackle

for the Pittsburgh Steelers (played 1968–1981), although he might

provide an excellent metaphor too. However, I mean the great composer

of opera Giuseppe Verdi (lived 1813–1901; Figure 1.7).

Opera, like the material in this book, can be appreciated at many

levels. First, one may just be surrounded by the music and enjoy it, even

if one does not know what is happening in the story. Or, one may know
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the story of the opera but not follow the libretto. One may sit in an easy

chair, libretto open and follow the opera. Some of us enjoy participating

in community opera. Others aspire to professional operatic careers. And

a few of us want to be Verdi. Each of these – including the first – is a

valid appreciation of opera.

The material in this book does not come easily. I expect that readers

of this book will have different goals. Some will simply desire to be able

to read the literature in theoretical biology (and if you stick with it,

I promise that you will be able to do so by the end), whereas others will

desire different levels of proficiency at research in theoretical biology.

This book will deliver for you too.

Regardless of the level at which one appreciates opera, one key

observation is true: you cannot say that you’ve been to the opera

unless you have been there. In the context of quantitative methods,

working through the details is the only way to be there. From the

perspective of the author, it means writing a book that rarely has the

phrase ‘‘it can be shown’’ (implying that a particular calculation is too

difficult for the reader) and for the reader it means putting the time in to

do the problems. All of the exercises given here have been field tested

on graduate students at the University of California Santa Cruz and

elsewhere. An upper division undergraduate student or a graduate

student early in his or her career can master all of these exercises with

perseverance – but even the problems marked E may not be easy enough

to do quickly in front of the television or in a noisy café. Work through

these problems, because they will help you develop intuition. As Richard

Courant once noted, if we get the intuition right, the details will follow

(for more about Courant, see Reid (1976)). Our goal is to build intuition

about biological systems using the tools that mathematics gives to us.

Figure 1.7. The composer

G. Verdi, who provides a

second metaphor for the

material in this book. This

portrait is by Giovanni Boldini

(1886) and is found in the

Galleria Communale d’Arte

Moderna in Rome. Reprinted

with permission.
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The population biology of disease is one of the topics that we will

cover, and Verdi provides a metaphor in another way, too. In a period of

about two years, his immediate family (wife, daughter and son) were

felled by infectious disease (Greenberg 2001). For more about Verdi

and his wonderful music, see Holden (2001), Holoman (1992) or listen

to Greenberg (2001).

How to use this book (how I think you got here)

I have written this book for anyone (upper division undergraduates,

graduate students, post-docs, and even those beyond) who wants to

develop the intuition and skills required for reading the literature in

theoretical and mathematical biology and for doing work in this area.

Mainly, however, I envision the audience to be upper division and first

or second year graduate students in the biological sciences, who want to

learn the right kind of mathematics for their interests. In some sense,

this is the material that I would like my Ph.D. students to deeply know

and understand by the middle of their graduate education. Getting

the skills described in this book – like all other skills – is hard but

not impossible. As I mentioned above, it requires work (doing the

exercises). It also requires returning to the material again and again

(so I hope that your copy of this book becomes marked up and well

worn); indeed, every time I return to the material, I see it in new and

deeper ways and gain new insights. Thus, I hope that colleagues who are

already expert in this subject will find new ways of seeing their own

problems from reading the book. Siwoff et al. (1990) begin their book

with ‘‘Flip through these pages, and you’ll see a book of numbers. Read

it, and you’ll realize that this is really a book of ideas. Our milieu is

baseball. Numbers are simply our tools’’ (p. 3). A similar statement

applies to this book: we are concerned with ideas in theoretical and

mathematical biology and equations are our tools.

Motivated by the style of writing by Mike Rosenzweig in his book

on diversity (Rosenzweig 1995), I have tried to make this one fun to

read, or at least as much fun as a book on mathematical methods in

biology can be. That’s why, in part, I include pictures of organisms and

biographical material.

I taught all of the material, except the chapter on fisheries, in this

book as a six quarter graduate course, meeting once a week for two

hours a time. I also taught the material on differential equations and

disease in a one quarter formal graduate course meeting three times a

week, slightly more than an hour each time; I did the same with the two

chapters on stochastic population theory. The chapter on fisheries is
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based on a one quarter upper division/graduate class that met twice a

week for about two hours.

Connections

In an effort to keep this book of manageable size, I had to forgo making

it comprehensive. Much of the book is built around current or relatively

current literature and questions of interest to me at the timing of writing.

Indeed, once we get into the particular applications, you will be treated

to a somewhat idiosyncratic collection of examples (that is, stuff which

I like very much). It is up to the reader to discover ways that a particular

tool may fit into his or her own research program. At the same time,

I will end each chapter with a sectio n called Con nections that points

towards other literature and other ways in which the material is used.

The marginal value theorem

There are probably more than one thousand papers on each of the mar-

ginal value theorem, the two prey diet choice problem, parent–offspring

conflict, and extraordinary sex ratios. These ideas represent great

conceptual advances and have been widely used to study a range of

questions from insect oviposition behavior to mate selection; many of

the papers add different aspects of biology to the models and investigate

the changes in predictions. These theories also helped make behavioral

ecology a premier ecological subject in which experiments and theory

are linked (in large part because the scale of both theory and observation

or experiment match well). At the same time, the ability to make clear

and definitive predictions led to a long standing debate about theories

and models (Gray 1987, Mitchell and Valone 1990), and what differ-

ences between an experimental result and a prediction mean. Some of

these philosophical issues are discussed by Hilborn and Mangel (1997)

and a very nice, but brief, discussion is found in the introduction of

Dyson (1999). The mathematical argument used in the marginal value

theorem is an example of a renewal process, since the foraging cycle

‘‘renews’’ itself every time. Renewal processes have a long and rich

history in mathematics; Lotka (of Lotka–Volterra fame) worked on

them in the context of population growth.

Unbeatable and evolutionarily stable strategies

The notion of an unbeatable strategy leads us directly to the concept of

evolutionarily stable strategies and the book by John Maynard Smith

(1982) is still an excellent starting point; Hofbauer and Sigmund (1998)
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and Frank (1998) are also good places to look. Hines (1987) is a more

advanced treatment and is a monograph in its own right. In this paper,

Hines also notes that differences between the prediction of a model and

the observations may be revealing and informative, showing us (1) that

the model is inadequate and needs to be improved, (2) the fundamental

complexity of biological systems, or (3) an error in the analysis.

On writing and the creative process

In addition to Strunk and White, I suggest that you try to find Robertson

Davies’s slim volume called Reading and Writing (Davies 1992) and

get your own copy (and read and re-read it) of William Zinsser’s On

Writing Well (Zinsser 2001) and Writing to Learn (Zinnser 1989). You

might want to look at Highman (1998), which is specialized about

writing for the mathematical sciences, as well. In his book, Davies

notes that it is important to read widely – because if you read only the

classics, how do you know that you are reading the classics? There is

a wonderful, and humourous, piece by Davis and Gregerman (1995) in

which this idea is formalized into the quanta of flawedness in a scien-

tific paper (which they call phi) and the quantum of quality (nu). They

suggest that all papers should be described as X:Y, where X is the quanta

of phi and Y is the quanta of nu. There is some truth in this humor:

whenever you read a paper (or hear a lecture) ask what are the good

aspects of it, which you can adapt for your own writing or oral pre-

sentations. The interesting thing, of course, is that we all recognize

quality but at the same time have difficulty describing it. This is the

topic that Prisig (1974) wrestles with in Zen in the Art of Motorcycle

Maintenance, which is another good addition to your library and is in

print in both paperback and hardback editions. In his book, Stephen

King also discusses the creative process, which is still a mystery to most

of the world (that is – just how do we get ideas). A wonderful place

to start learning about this is in the slim book by Jacques Hadamard

(1954), who was a first class mathematician and worried about these

issues too.
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