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APPLIED MATHEMATICIANS AND NAVAL OPERATORS*
MARC MANGELT

Dedicated to Philip Morse on the fortieth anniversary of the
Anti Submarine Warfare Operations Research Group

Abstract. This is a personal view of applied mathematics in a truly nonacademic setting (an operational
navy command), based on the author’s experiences as a field representative of the Operations Evaluation Group.
The principles that can make analysis effective in such a setting are described and explained. The intermeshing
of people and personality is as important as the fields themselves. The traits that a mathematician needs to effect
change by his analysis are discussed. A number of specific examples are provided to illustrate the kinds of
problems that can be encountered.

Those who have learned only how to apply some given theoretical framework to the solving of
problems which arise within this framework, and which are soluble within it, cannot expect that their
training will help them much in another specialism. It is different with those who have themselves
wrestled with problems, especially if their understanding, clarification, and formulation, proved
difficult . . . those who have wrestled with a problem may be compensated by gaining an understand-
ing of fields far removed from their own . . . there are no subject matters but only problems . . . which
almost always need for their solution the help of widely different theories.

—Karl R. Popper, Objective Knowledge
(Oxford University Press), p. 182.

1. Introduction. Although this purports to be a paper about nonacademic applied
mathematics, it is really about the interaction of applied mathematicians and naval
operators. By “operator,” I mean an individual whose job involves some part of naval
action, e.g., navigating a ship, flying an aircraft, running a radar, etc. The wording is
important, because I believe that when applied mathematics is done in a nonacademic
setting, the intermeshing of people is as important as the fields or techniques involved.
The nonacademic setting for me was an operational naval command at Whidbey Island,
Washington, where I worked as the Operations Evaluation Group field representative for
a period of 18 months. Hence this is a personal view, but I think that much of what will be
said here translates to other fields with little or no change.

Very often in research, the actual process of doing research is more satisfying than
the particular problem being studied. It is for this reason that nonacademic applied
mathematics can be so rewarding. But there is a serious pitfall, one that should be
acknowledged from the outset. It is difficult to describe this kind of work without its
appearing to be trivial. And often the more applied a problem is, the more mathemati-
cally trivial it may be. This runs against the training we receive in mathematics that
“harder is better.”

On the other hand, in many applied problems the real difficulty and intellectual
challenge is in finding and characterizing the problem in the first place, and not in solving
it. The harder-is-better syndrome is a pitfall that can be overcome, once one is aware of it.
Of course, one will not become “famous” in the applied mathematics community by
solving problems that appear to be easy. This is another trade-off that must be
considered.

In the next section, I describe the Operations Evaluation Group (OEG), one of the
oldest organizations in the United States doing operations research and one of the few
that is still problem, rather than technique, oriented. I discuss the principles that make
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OEG effective. In §3, I discuss the problems that naval operators face. They are generally
operational not technical ones, and require useful, immediate solutions. In §4, I describe
what I believe an applied mathematician can offer to the operators, in terms of approach
and outlook. In §5, three examples of problems that I worked on are given. There are
many other examples alluded to, but these three capture the essence of the work.

At the outset, I wish to thank the many officers and enlisted men and women who
helped me, especially LCDR Bill Headridge and CAPT Paul Hollandsworth, whose
efforts made my tour a success, and who are now good friends. I also thank RADM Henry
Arnold, who as the commander at Whidbey created such a good working environment.

2. The Operations Evaluation Group. Operations research in the United States
began in 1942, with the formation of the Anti Submarine Warfare Operations Research
Group (ASWORG), headed by Philip Morse. The history of ASWORG is described in
Morse’s book [1]. Morse collected a group of scientists and mathematicians, including
George Kimball, Bernard Koopman and William Shockley, to work on various problems
associated with German submarine operations off the Atlantic Coast. The group was very
successful; some of its work is described in reports issued in the late 1940’s [2]—[4]. After
World War II, the ASWORG became the Operations Evaluation Group (OEG), and in
1962 OEG and the Institute for Naval Studies were merged to form the Center for Naval
Analyses (CNA).

Operations research was created in the turmoil of a war to solve problems. The point
of ASWORG was to bring a scientific approach to naval problems, and not to find
problems that could be solved by a certain set of techniques.

The breadth of the staff of ASWORG caused many different techniques to be used
in the solving of problems of interest to the Navy. Today, operations research is codified,
much to its detriment [5], [6]. When operations research is mentioned, people usually
think of a set of techniques (e.g., linear programming, optimization, queuing theory, etc.)
rather than a viewpoint about problem solving. This may be due, in part, to the
introduction of academic departments of operations research [5], [6]. However, the old
style, problem solving approaches of operations research are still being used by OEG, and
other like organizations.

During the first few years of ASWORG, a number of principles for effective analysis
emerged. Although these principles were never stated as such, they have been used to
guide OEG for 40 years. My view of the principles is this:

1. Principle of closeness: The analyst must be near the problem. It was discovered
earlyin ASWORG’s work that the analysts could do much more for the Navy if they were
at the scene of the problem—where they could see the equipment in operation and talk
with the operators about the problems—than if they were at a desk 2000 miles from the
problem. This observation lead to the OEG field program, in which analysts leave the
home office for 1-3 years and go to work at the naval command. They are attached to the
staff at the command and work as theoreticians for the operators.

2. Building confidence. In general, operators feel that analysts don’t have much to
offer them, and it is up to the analyst to find simple ways of convincing the operator that
analysis is useful and that he (the analyst) cares about the problems of the operator. There
are many different ways to build confidence. In my case, for example, I won the
confidence of one operator by writing a program for the HP-69 pocket calculator that
allowed him to do calculations on the machine in 30 minutes that had taken him 4 hours
the day before; of another operator by showing how to use the central limit theorem to
estimate how many trials of a test were needed to gain a certain accuracy; and of an entire
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squadron of aviators by showing them how to calculate when a typhoon would hit the
carrier we were on. I did this by fitting a simple quadratic to give distance between us and
the typhoon as a function of time.

3. Interaction at all levels. The third principle established during World War 11
was that the analyst should be able to interact easily with all levels of the Navy. For this
reason it is helpful if the analyst is a civilian, instead of an officer. Admirals make
decisions, but it is the junior officers who know the operations of the equipment
intimately, and it is the enlisted technicians who have insights into technical problems and
into problems of maintenance and reliability. In my case, for example, I found it very
important to consult with the enlisted men while designing data collection sheets for the
analysis of the effectiveness of a new type of sensor. They guided me into areas that few of
the officers were aware of.

4. Hemibel thinking. A complicated analysis that leads to a 2% increase in
effectiveness of operations is generally not worth doing. In the early years of ASWORG,
it was agreed that if the actual value of an operation was within a factor of 3 (i.e., 1
hemibel) of the theoretical value, then a change in operation would be unlikely to improve
the result. Perhaps this overstates the case for present day operations analysis, but not by
much. The goal of the analysis, after all, is understanding, prediction, and improvement in
system performance.

3. Problems of naval operators. The problems faced by the operators can be
characterized as follows: First, the problems are operational, not technical or design. The
operator has a piece of equipment, which undoubtedly could be improved, but he needs to
figure out how to use it today. An analyst who tells him how to improve the equipment
without telling him how to use today’s equipment only angers and alienates the operator.
For example, the EA-6B is a sophisticated electronic warfare aircraft first built for use in
Viet Nam. There are presently two versions of the aircraft used in the fleet; they differ
mainly in the automated nature of detection and identification processes. Two other
versions, which will be even more automated, are being designed. These new aircraft will
reduce the operators’ workload considerably. The operators, however, need tactics for the
present day aircraft, not for the superior ones down the line.

The second characteristic of the problems is that although operators are looking for
good ways of doing their jobs, optimizing some mathematical criterion is not their goal.
This is especially important since most soluble mathematical optimization problems have
little to do with the real operation. In H. Simon’s language [7], [8], they are seeking to
satisfice rather than optimize. An example of this phenomenon arises in search theory.
Searches are conducted almost every day by naval operators, and starting in World War
I1, the theory of search developed into a mathematical subject [4], [9] of complexity and
sophistication. In the development of search theory, the idea of optimal search has played
a central role. Yet the operators often don’t care if they have an optimal search plan; they
just want one that is “not too bad.” They need a figure like Fig. 1, and want to know if life
follows curve A or curve B. This will determine how close to the optimal plan their plan
needs to be, to be not too bad.

The third characteristic of the problems is that there are always stochastic factors
present in the world, and often deterministic biases that may be larger, generally
unknown and very hard to deal with. The presence of stochastic fluctuations and unknown
deterministic biases makes it impossible to approach problems as if life were predictable
and controllable from the outset. I shall provide two examples of this phenomenon in §5.

Two characteristics concern the operators themselves. They are not mathematicians,
but after they are convinced that the analyst cares, they can often see the value of a well
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FIG. 1. A schematic that the operators need, characterizing probability of detection and search plan.

presented analysis. Often the problems tackled by the analyst require only algebra,
elementary statistics and calculus. There are many officers who have these tools and lack
the confidence to use them, but they can appreciate the analysis.

Finally, the good operators often have some sort of model of the problem of interest.
It is usually a verbal model and it is up to the mathematician to draw out the model and
convert it to a mathematical one. For example, in air to air combat, pilots had for many
years a system for classifying the state of the combat according to the relative positions of
the aircraft (highly advantageous for aircraft 1, advantageous, neutral, etc.). The pilots
also had ideas about transitions between states. My colleagues R. Oberle, W. Nunn and S.
Naron converted the verbal model to one modeled using a semi-Markov process [10].
Their analytical methods are now in use on both coasts for the training of aircrews in air
combat maneuvering.

4. What can an applied mathematician offer? By its very nature, applied mathemat-
ics is difficult to define, and since this is supposed to be a paper about people, I will instead
consider what an applied mathematician can offer. His first ability is that of model
building. This means taking the verbal model of the operator and converting it to a
mathematical one. The crucial step here is knowing what terms to throw away and what
to keep when creating the model. Once a model is constructed, qualitative analysis,
approximations, and interpretations of the analysis are all trademarks of the applied
mathematician. Another trait is the ability to obtain numbers. A facility for computing is
important, since the operators want answers, and these are usually numerical in nature.
Some knowledge of statistics is helpful.

Throughout any work in this type of setting, the goal of the applied mathematician is
change. One is successful if he or she can change the way a problem is viewed or the way
an operation is done. Too often, in too many settings, the goal of change is overlooked
[11].

The final, and perhaps most important, characteristic that the mathematician needs
is the desire to solve problems. One cannot be successful in this kind of work by bringing
techniques and looking for problems that can be solved by those techniques. The problems
are paramount, and one needs the versatility to bring in any techniques that can be used to
solve them.
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The particular academic training, in courses and in research, is not as important as
the characteristics described above. One has to be willing to learn more and to learn
whatever is needed for the job.

5. Some examples of problems. In this section, I discuss three problems, initiated by
operators, that I worked on while I was the OEG Field Representative at the Whidbey
Island (Washington) Naval Air Station. The aircraft operating out of Whidbey are the
medium attack A-6 bomber and the EA-6B electronic warfare aircraft.

S.1. EA-6B pod availability. The EA-6B carries its jamming equipment in pods that
are mounted on the wing stations. There are two transmitters per pod and each aircraft
can carry up to five pods. Ideally, one would like all pods to work all the time. I shall refer
to the overall fraction of the time that a pod works as the availability of the pod. If the
availability is low, then it is important to understand the causes of poor availability and to
devise ways to improve it.

Within a few weeks of my arrival at Whidbey, in February, 1979, a squadron
returned home from a cruise with data on pod availability. They had set some simple
criteria for a pod’s being classified as working and had counted the fraction of pods that
worked. They found low availability. These numbers were reported to the Admiral, who
wanted further investigation. He tasked an officer, who came to me with the log book that
the squadron had used and asked me to sift through and analyze the data.

When the data were first reported, as “a certain type of pod worked 70% of the
time,” one infers a picture of pod availability. The picture in this case is flipping a coin: a
simple Bernoulli trial. As I analyzed the data, it became clear that a more complex picture
was needed. I developed a series of Markov models for pod availability, the simplest of
which is the following.

Assume that there are only two states for a pod, mission capable (MC) or not mission
capable (NMC), and let P,(n), Py(n) be the probabilities that a pod is MC or NMC on
the nth flight. Let p,,, pio, Poo» Poi be the probability of transition MC — MC, MC —
NMC, NMC — NMC, NMC — MC respectively. Then

(1) Pi(n+ 1) = P,(n)py; + Po(n)py,.
Since Py(n) = 1 — P,(n), equation (1) becomes
(2) Pi(n+ 1) =poy + Pi(n)(p1y — Par)-

The stationary solution of (2) is

_ Poi
Pio + Par

The p;;, which can be estimated from the data, have the following interpretations: p,, is a
measure of the effectiveness of maintenance, since it characterizes the rate at which pods
that are NMC return to the MC state; p,, is a measure of reliability, since it characterizes
the probability that that a pod which is MC remains MC. The long term availability can
be low if either p,, or p,, is low; however, ways to increase availability differ very much,
depending on whether the problem is in maintenance or reliability. If p,, is small, so that
maintenance is the cause of poor availability, it may be possible to improve availability
through increased attention to the problems of maintenance. Thus one is faced with a
command problem. If p,, is small, however, the problem of poor availability is related to
the design of the equipment and improving availability may no longer be connected with
operational aspects. I found that p,, was about .2 or less, whereas p,, was about .8 or more,

(3) PI:
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and suggested that availability could probably be improved by command attention to
maintenance.

I checked other predictions of the simple two-state Markov model against the data
and found that this simple model stood up well to scrutiny; so I presented my results to the
command. I argued, and convinced officers, that the picture of the operations must be
changed. Pod status is no longer anologous to flipping a coin; more complicated verbal
models are needed.

After the completion of this initial work, we began an in-depth study of the causes of
low pod availability. We started using a four-state Markov chain model and collected data
from 7 of the 10 EA-6B squadrons that go to the fleet. Along with operational data,
collected on aircrew debrief sheets, we had maintenance data sent back to Whidbey. I
continued my analysis of these data, using any mathematical or statistical technique that
I thought helpful.

By May, 1980, I was able to prepare a fairly substantial report on causes of poor pod
availability. This report included information on the overall availability of pods, relation-
ship between pod availability and aircraft, conclusions about reliability, and causes of
poor maintenance and ways to improve maintenance. Pieces of this report appeared in
various newsletters; I presented my results to the EA-6B design review conference in
August, 1980, and the report was sent to VADM McDonald, the Deputy Chief of Naval
Operations for Air Warfare. This work certainly led to a change in the way the problem
was viewed; whether the overall availability will increase due to recommendations being
followed remains to be seen.

5.2. Wings level landings on angle decks. I became involved in this problem because
I shared an office with an experienced A-6 pilot and overheard a conversation. My office

CARRIER

FIG. 2. Geometry for the angle deck landing problem.
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mate was arguing with two new pilots about the possibility of a “wings level” landing on a
carrier deck. The young pilots asserted that in flight training they were given a proof that
it was possible to line up the aircraft with the landing deck of the carrier and then drive
the ship with the proper velocity so that a pilot could land without making another
correction. The older pilot did not believe these claims, even when he saw the proof. So he
asked me to take a look at the problem.

The relevant geometry is sketched in Fig. 2. A vector parallel to the angle deck is
I=(1, —1/tana); a characteristic value is a = 10°. In typical operations, the ship is
driven so that the resultant of ship’s motion and natural wind is “straight down the angle,”
i.e., parallel to 7, with a magnitude of about 30 knots (kt.). Suppose that the ship’s velocity
vector is b= (b,,b,) and the wind is w=(w,, —w,) so that the resultant wind is
r=(w, — b,, —w, — b,). We now want to drive the ship so that r is parallel to / and so that
the magnitude of 7 is u. This gives the following equations for b:

u
b,=w, 7 s
1 12
+. 3
tan“a
(4)
1 u
b= —w, =
tan « | .
1 2
tan” «

Table 1 shows the ship’s speed needed to keep a 30 kt wind down a 10° angle. From
Table 1 we conclude that it is possible to drive the ship properly, but that as the wind
increases, the speed of the ship becomes unreasonably large.

Thus it appears that wings level landings are at least theoretically possible in a
nonfluctuating world. Thus, let us consider now the effects of fluctuations in the velocity
of the ship and aircraft. In such a case, we can only ask for the probability of a wings level
landing. To do this, let (S,(),S,(7)) and (A,(¢), 4,(t)) denote the positions of the ship
and aircraft respectively (assuming that they already are in the same plane). We assume
that these variables satisfy the equations

$x=bx+£|(t)v A,-W,—V,-i—g;(t),
(5) S, = b, + £(1), A, = w, — v, + £(1),
Sx(o) = Sy(o) = 0’ AX(O) =4da,, Ay(O) = a),.

In (5), the &(¢) are independent Gaussian white noise processes, (w,,w,) is the wind

TABLE 1
Ship’s speed needed to keep a 30-kt wind down the angle

Wind speed (kt.) Direction Ship’s speed
10 30 28
45 26
60 23
20 30 30
45 25
60 19
30 30 35
45 28

60 21
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vector, (v,, v,) is the velocity vector of the aircraft and (a,, a,) is the initial position of the
aircraft. We assume that a, and a, are picked so that the aircraft is lined up with the angle
deck; thus a, = a,tana. Furthermore, we assume that », and », are picked so that
deterministically the aircraft can make a wings level landing. To find them, we drop the
noise terms in (5), and set S.(t) = A.(t) and S,(¢) = 4,(t) to obtain the following
equation for v,:

(6) (b, + ' — v —w)tana=b, + v, — w,.

In (6), v is the speed of the aircraft; once v, is known, v, = (v* — v2)"/%

Let us proceed with a “best case™ calculation of the probability of a wings level
landing. Thus, we assume that b,, b,, £,, &, w,, and w, are identically zero. In this case,
the only noise is due to fluctuations in aircraft position. From (6) it is easy to see that
v, =v/(1 + tan"*a)"/? and that v, = v, /tana. Since the integral of white noise is
normally distributed, we conclude from (5) that 4,(¢) is normally distributed with mean
and variance

(7) ”’x(’) =4a, — ”xty
(8) ax(1) = ait,

where o}t is the variance of the Wiener process obtained by integrating £,(¢). Similarly,
A, (1) is normally distributed with mean and variance

%) u,(1) =a, — v,t,
(10) ai(l) = ot

In this example, the ship stays at the origin. Thus, the probability of a wings level
landing is the joint probability that 4,(r) and A4,(¢) are simultaneously approximately
zero. By approximately, let us understand that they are within 2/ of zero. The probability
of a wings level landing P, can then be defined by

I (e dx I d
(11) P, = max [f e~ F—#l1)/253(0) _l lf, o~ U= 1 (7/26340) ly
-1 —

V2rai (1) V2ral(t)]

In Table 2, values of P, are given for these parameters: a, = 1 nautical mile (n.mi.),
v = 120 kt, & = 10° and various values of ¢, and ¢,. We assume that they are equal, so that
0, = 0, = ¢, and define the intensity of fluctuations by (¢} + 03)2,/(a} + a})'/?, where 1, is
the deterministic time to land the aircraft.

When considering the results shown in Table 2, one should also know that aviators

TABLE 2
Probability of a wings level landing

Intensity of fluctuations Probability of a wings level landing
0 1
1.67 x 107 97
417 x 107° 11
1.67 x 10~* 024
417x10°? 1.04 x 10°?
0167 2.7x107*
.0667 6.7x107°

15 29x10°°
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are given badges for 100 landings on a carrier. Thus an event that has a probability of
occurrence of 10~ at each landing is rarely going to be observed in any aviator’s career.
The conclusion is that wings level landings are possible, but highly improbable in the
world modelled by (5).

5.3. Three-bearing method for passive localization. One of the missions of the
EA-6B is that of passive localization of surface radar emitters. This localization is done by
some sort of triangulation. The observed bearing between aircraft and emitter, 6,, is given
by

(12) 0,=6,+ b0, +¢

where 0, is the real bearing between the aircraft and emitter, 5(6,) is a deterministic, but
unknown bias function, and € is a random noise term. For the EA-6B, |5(6,) | may be as
large as 30°, while the root mean square deviation of € is about 1°-3°.

(@) INITIAL HEADING

FI1G. 3. Characterization of the three-bearing method.
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Since about 1945, triangulation problems with random noise received much atten-
tion (e.g., [12], [13]), while the questions of the unknown deterministic bias were ignored.
In the EA-6B, at least, the deterministic bias overrides the random noise in almost all
cases, and yet until recently there was no way to treat it. In collaboration with two
officers, an EA-6B operator and an A-6 pilot, I developed the following method for
localization in systems with an unknown deterministic bias [14]. Its operational descrip-
tion is the following:

1. Aninitial value of the observed bearing, 8,, = «, is recorded.

2. The aircraft turns through an angle A,. If the observed bearing is positive
(negative) then the turn is positive (negative). The aircraft flies until the observed bearing
0, is equal to . The distance travelled, s,, is recorded.

3. The aircraft turns again, through an angle A,, and flies until the observed bearing
0, is equal to . The distance travelled, s,, is recorded.

The geometry associated with this operation is shown in Fig. 3. Referring to Fig. 3
and using the law of sines twice shows that

S Y _ R,
sinA, sinf, sin(6, —A))’
(13)
L)) R, R,

sinA, sinf, sin(f, —A4,)°

For the triangle with sides s,, y, and R,,

2 2 2
Yy + Ry — s
14 A =—-1 "1
(14) Cos 4, R,
From (8)
s, sin 6, . R,sin A,
(15) = Snd, and siné, = P
so that
5 sin A,
1 = R, « - R ;
(16) y 55 ' Sin A, RUAN

here y = 5,5,, 7 = sin 4,/sin A,.
Using (16) in (14) gives
Y'n' R} + R} — 5]
2ynR]

Equation (17) is cast into a dimensionless form by setting r, = R, /s,. Then, after some
simplification, (17) becomes

y
[v’n® + 1 — 2yncos A,]'/?

(18) r

From (15), sin 6, = r, sin A,, so that 8, = arc sin (r, sin A,). Since the arc sin is double
valued, more work is needed to evaluate 6, uniquely. In [14], it is shown that by switching
to Cartesian coordinates, one finds that

f;:)a _ [—s,tan A, tan (A, + A,) — (s5,sin A, — (5, + 5, cos A,) tan (A, + A,)) tan A,]
r= [=s,tan (A, + A,) + tan A, (s, + 5,cos A, + 5, sin A, tan (4, + A,))]

’
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so that 6, is known uniquely. Once 6, is known, from (13) we find that

B R,sin (6, — A,)

(20) R, -
sinf,

This method was flight tested in the summer of 1980 and was found to be operationally
feasible and accurate to within 10% or less in range error. Thus, this method allows
triangulation in systems with an unknown bias. In [14], it is shown how random errors can
be incorporated into the method.

6. Conclusion. There are many problems and problem areas not mentioned in the
above examples. A different analyst, by nature of taste and personality, would probably
have worked on different problems, but I believe that the general principles are applicable
to any field in which mathematics is to be applied. In addition to the principles listed in §2,
I believe that it is important to recognize the prevalence of stochastic effects and of
unknown deterministic biases in the natural world. Too much analysis is done based on
assumptions of a perfectly predictable world, in which plans can be made at the outset and
need not be changed.

Honesty requires that I point out some of the frustrations of this kind of work. The
first is a lack of continuity. With good reason, an analyst should be at a field assignment
no longer than about 2 or 3 years. Otherwise he becomes stale and too emotionally
involved with the job to retain a high level of objectivity. But there is no reason to expect
that one’s replacement will follow up on projects that have been started. In general, that
will not happen and it can be disappointing. The second frustration is that, as with all jobs,
there is drudgery in this one also. Not every day contains excitement. A third frustration
is that often there is little feedback about the analysis one has done. The analyst finds
himself forcing people to read his work and respond to it. Sometimes this is an unpleasant
task. These frustrations appear in almost any job, and surely some would appear in any
academic job.

The principles that make OEG effective undoubtedly will work in any type of
nonacademic setting, and point the way for mathematicians to be effective in the use of
their tools.

Acknowledgments. For reading and commenting on the manuscript, I thank J.
Beder, D. Cope, A. Krener, S. Mangel, R. Plant and D. Wills. The paper would not have
been written without the encouragement of D. Ludwig and P. E. DePoy. C. Clark pointed
out the Karl Popper quotation to me.

REFERENCES

[1] P. MORSE, In at the Beginnings: A Physicist’s Life, MIT Press, Cambridge, MA, 1977.

[2] P. MORSE AND G. KIMBALL, Methods of Operations Research, OEG Report 54, Superintendent of
Documents, Washington, DC, 1946.

[3] C.STERNHELL AND A. THORNDIKE, Antisubmarine Warfare in World War I, OEG Report 51, reprinted
1977 by Center for Naval Analyses, Alexandria, VA.

[4] B. O. KOOPMAN, Search and Screening, OEG Report 56, 1946, revised version published by Pergamon,
New York, 1980.

[5] R.ACKOFF, The future of operational research is past, J. Oper. Res. Soc., 30 (1979), p. 93-104.

[6] , Resurrecting operational research, J. Oper. Res. Soc., 30 (1979), pp. 189-199.

[7] H.SIMON, The Science of the Artificial, MIT Press, Cambridge, MA, 1969.

[8] R. ACKOFF, The Art of Problem Solving, John Wiley, New York, 1979.

[9] L.D.STONE, Theory of Optimal Search, Academic Press, New York, 1975.




300 MARC MANGEL

[10] W.R.NUNN AND R. A. OBERLE, Evaluating Air Combat Maneuvering, Vol 1, Center for Naval Analyses
Study 1077, Center for Naval Analyses, Alexandria, VA, 1976.

[11] E. BELTRAMI, Models for Public Systems Analysis, Academic Press, New York, 1977.

[12] M. DANIELS, Statistical theory of DF fixing. J. IEE London, 94 (1947), pp. 762-770.

[13]) A.GELB, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1975.

[14] M. MANGEL, Three bearing method for passive localization on systems with an unknown bias, IEEE
Trans. Aerospace Systems, AES-17 (1981), pp. 814-819.



