Three Bearing Method for Passive Triangulation in
Systems With Unknown Deterministic Biases

Abarract

An apessticnally simple sethod for triasgulation in systems
with gtenng blaes is presenisd. The method mequises thees
bearing measarements and twa rurad by the aircrafl. Anslysis

of the methed seows thet accuraie iskgulagon can b= per-
Formed without kniswing the biss function. The method has been
iesied hy nemerical simskation snd in motual Mights, and the pest
results are reported. An approvimste method for including
sl random fucrudtions and canfidemse enaioar gboul the

it of iriangulaticen is gven.

L. Intredustion

Many sirborne and surface sensing systems in prasent
usé are passive devices, As the search platform moves
through space, a series of passive bearings is taken and
the position of the source (henceforth called the target)
is estimated by triangalatbon. The observed bearing 8
is generally composed of three terms
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Bg=8_+ b ) +ew . (1)

In this eguation &, I3 the real bearing between the
searcher's heading and the target (measured clockwise),
B8, Fis 8 deferminisric bias function depending upon
8, and the system parameters T, and éw I8 a random noise
ceen, with E(w) = 00and E(w? = o = (17, so that £ s

s measure of the intensity of the random terms. In meny
airborne platforms, M@, f) |~ 10° = 30°, bt

o= 2" = 4", 50 that the deterministic biases are much
stranger than the random terms.

[n this correspondence, we consider & triangulation
problem in the search fof & stationary targes (or almast
stationary, relative to the searcher) in which deternn-
istic and random terms enter into 9. We assume that
the sersing platform is an gircraft. The treatment of
random ertor in triangulation received considerable atten-
tiom over the last 20 vears (some examples are [1]-[5])
and variouws Hnear and nonlinear fillers were developed
for passive localization problems. In general, these papers
treal the sanistica! problem conmected with (1) In that
cate, the bias is ignored or presumed known, many bear-
ings are taken and some kind of statistical procedure is
sought to obtain a best estimate of position. In thi
correspondence, we study the ¢ase of a strong, hut
unknown deterministic bias. In order (o demonstrate
that deterministic biases may be importent, consider
the simplest triangulation problem, shown in Fig. 1. At
time 0, the flst bearing, 94 is observed. The alreraft
flies a distamce § and then a second pearing 8gy 18 observed.
It is easy to see that the distance to the target after the
second bearing measurement & satisfies

R/E = sinlf Wein (foy — B ) - (2}

Assume that the ohserved bearing is the sum of the
regl hearing 8, and & deterministic bias function (8, ).
Then in {2},

By =0, + BB . ()

Fig. 2 shows the relative error obtained using (2) with
Bt} = 10 3in{38,) 25 a Function of 84, for Jgy = 157
and 35°. The relative ermor can be a8 large as 50 percent.
in real systems B{9;, 1) is not a simple simsedd; in fact,
it may mot be known at all,

I ihis correspandence, & methed for passive tnangu-
ation in systems with a biag is introduced. The method
hs these features:

1) Operationally, it is simple 10 use (and has been, soe
Section 1V).

7) The bias function need not be known at all,

1) The method is stable to small pertushations in
TR TN 1S,

4) Random errors can be incorporated into the method.

In Section 11, the operational methed is described.
The main analytical resulis, fog e = 0, are given in Secibon
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111 apd pumerical and flight testing i reporied n Section
IV, Im Sectlon V', it is shown how the method can be
madified to include random fluctuations, when ¢ is small.

Il. Three Bearing Method: Operational Description

The prometry of the tiree bessing method is shean
in Fig. 3. The method consists of the following opera:
iioms:

1} Anm initial value of the chetrved bearing 9y = o is
recopded.

7} The adreraft turns throwgh an angle &, . I the
ohserved hearing ls positive (negative], then the turn
is positive (negative), The aircraft flies until the
oheerved beaning 95 is equal to o, The distance
traveled, 5y, is recorded,;

3) The aireraft twens again, through an angle 4; , and
flies until the abserved bearing By, B egual 1o a.
The distance traweled , 5, , is reconded,

In Section 117, we show that from ﬁ:.ﬁ],ﬂ} ,Wd
53 the real rampe and bearing to the targe? can be cal-
culated, without knowing the hias function. The tum
angles &, and Ay are free parameters that can be deter-
enined by the operator. A large tumn anghe implies &
long time of flight until the orginal bearing is observed
again &nd more gocurate calculations, Corversely, a
smell turn implies a short leg, but the resules will be
less accurmte.

The three besring method has 4 number of operational
wirtises. The required messurements ant A, , Ag, 5y, and
£5. The tum angles can be messured accurately with
the aircrafit’s compass. The distances 5, and &5 can be
measured by clocking travel times and multiplying by
the adreraft speed, Thus all measuremenss can be made

very precidily.

[l. Three Bearing Method: Analytical Results

In this section we derive the main results of the paper.
Assume that &, , &y 1., and 5y are known, Set y =
$1/55 and 1y = sin &g fsin A, Let B be the distance
to the trget when second bearing Bo; B observed
{se¢ Fig. 47, By be the distance to the target when foy
is. oheerved. and &, be the real bearing to the tanget when
gy is ohserved. Then we obtain the following.

Resulr 1; Assume that 4 and  are known, In the
coordinate system shown in Fig. 4, the following resulis
hiald.

IF Bl 8,) is a simgle valued Funciion, then

Ry =5, [1+7'y" - 2 coena, |* ()
Ry =34 sin(f, — &, )/sin &, (%)
sin @ = (R, /5;) 5in &g {6)

DOREESPONDERCE

FRAGET

Fig 1. Seisp for implest misngelation problem

Fig 1. Perceniage errar in fanpe estlmation for simplest
triangulatios probiem with L0 biss luscrion

(A} By = 357, [B) By = 157 Percent ervar

(iR ok — Mgl o X 100

il

% ERROR

Fig. 3. Operational illustration of three beanng sethod.

WITIAL HEADWG

& TARIET

tan 8, = [—5; tam 4, tan{d,; +4;) — (1, sin &y
— 5z # 1, o0& &g ) tan(d, + 85 ) tan 8y )]
[— &5 tamidy + 820 # tan Ayisy 5 008 &

+5, sin A tan(d,; +4;)] . (7
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INITIAL HEADING

Fig. 4. Analytical setup for solution of three bearing method.

Fig. 5. Analytical setup for solution of three bearing method
in Cartesian coordinates.

FINAL HEADING

TARGET
(x,,9)

{0,0) 9

(si5inl g, ~5p = 5)c0887)
INITIAL HEADING

Note that (6) by itself cannot be used to determine
6,, since the arcsin is double valued. However, (6) and
(7) taken together allow one to determine J, uniquely.

To prove the above result, we use Fig. 4. That the
interior angles on the two triangles are A; and A, can
be shown by adding angles and insuring that the sum
is .

Referring to Fig. 4 and using the law of sines twice
shows that

sy /sin A, =y/sin 0, =R, /sin(6, - Ay)

sp/sin Ay =Ry /sin 6, =R, /sin(6, — Ay) . ®)
For the triangle with sides s, y, and R,
cos Ay = (0 +R,? - 51 ?) 2Ry ®
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From (8),

y =15, sin Br/sin Ay, sin6 =R, sin Ay /s, (10)
so that

y=(s1/52) Ry (sin Agfsin A,) =ynR; . an
Using (11) in (9) gives

cos Ay = (V*n*R, 2 +R,? - s12)/2ymR, . 12)

Equation (12) is cast into a dimensionless form by setting
ry =R, /s;. Then after some simplification, (12) becomes
= 2,2 k23
ro=y/[¥?n* +1—-2ymcos Ay]7 . (13)

If one returns to physical variables, (13) implies (4).
From (8), sin 8, =r, sin A, so that (6) is verified.
To find R,, equivalently r, = R, /s, , we again use

(8) to obtain

R, =R, sin(6, — A,)/sin 6, . (14)

Since sin 8, = R, sin A,/s,, (14) is equivalent to
R, =5, sin(6, — Ay)fsin A, (15)
and this verifies (5).

In order to verify (7), introduce a Cartesian coordinate
system centered at the aircraft after the third bearing
measurement with the y-axis along the aircraft head-

ing. Let (x;, y;) be the position of the target in this
coordinate system (see Fig. 5):

X, =y, tan 6, (16a)
xt=(yt+sz)tan(0r7A2) (16b)
x, =8 sin A, =(yt+s2 + s, cos A,)tan(@r—Al —4y) .

(16¢)

Using the trigonometric addition formula and (16a),
equations (16b) and (16c) can be rewritten as

x (14 0x v ) tan Bg] = 52)Ce v, —tan &) (179)
(x, — 51 sin A)[1+ (x,[y,) tan(B, + A,)]

=(y, +52 + 5 COs Az){xl/yt —tan(A; +45)] . (17b)

When (17a) is multiplied by tan(A, + A,) and (17b)
is multiplied by tan A, and (17b) is subtracted from
(17a), we obtain
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xt{— s; tan(A; + Az) + [s; +54 cos &,
+5; sin A, tan(A; + A,)] tan A, }

=yt{— Sy tan A, tan(A, + Ay) — [s; sind, @

—(s5 +5; cos Ay) tan(A; +A,)] tan A, . (18)
In light of (16a), equation (18) verifies (7).

Note that (6) and (7) can be combined to give the
result
cot§, =cot A, —(s2/s1) csc A, . (19)

Resulr 2: The three bearing method is stable. Small
changes in sy, 55, 4;, and/or A, produce small changes
inry, ry,and6,.

In order to demonstrate this result, we show that the
derivatives of r, 6,, and r, with respect to y and 7 are
bounded.

From (13) one finds

ary /3y = (1 —ym cos Ay)/ [y*n* + 1 — 2yn cos A, 3/

(20)
3r,[an = — ¥*(ym — cos A/ [y*n® + 1 = 2yn cos A, ]%/2
Using (6a) gives after some simplification

30,3y = (1 =y sin 852)77 (3r /37)
21
30 fan= (1 —r,? sin 8,2)7" (3ry [om) -

Inspection of (20) and (21) shows that all the deriv-
atives are well behaved functions of 7y and 7 as long as
the turn angles A, and A, are bounded away from zero.

IV. Tests of the Three Bearing Method

In this section we report on operational flight tests
and numerical simulations used to evaluate the three
bearing method.

In July, 1980, the three bearing method was opera-
tionally tested in flights by Tactical Electronic Warfare
Squadron 136 (VAQ-136) of the U.S. Naval Air Force.
The use of the three bearing niethod in this operational
test gave results which were accurate to within less than
10 percent error in range. In one case, the range error
was less than 3 percent. Further tests are now in progress
and those results will be reported elsewhere.

A simulation was also used to test the three bearing
method. The bias function used was a constant 10° and
the searcher started at the origin. The simulation was
written so that bearing measurements were taken to be
accurate to within * 0.5°. Table 1 shows the results of
some of these simulations.

CORRESPONDENCE

If, instead of the three bearing method, a simple
triangulation were performed, then after the first turn
and the second bearing measurement there is enough
information available for triangulation and calculation
of R,. Table II shows the real value of R, and the values
calculated by the three bearing method and by triangu-
lation.

V. Incorporating Small Random Errors in the Three
Bearing Method

Real bearing measurements always involve random
errors, in addition to deterministic biases. This section
shows how some of the random effects can be treated
when the intensity of the random noise is small. When
noise is present, the real bearing is no longer 8,, but is
6, + ew. If 8, + eu denotes the observed bearing, then
O +eu=0,tew+b(l, tew) . (22)
By Taylor expanding (22), we see that u = [1 + b'(6,)] w
so that the observed equipment error, var(u), is related to
the noise by var(u) = [1 + b'(6,)]* var(w).

In order to incorporate the noise, in (8) replace 6, by
0, + ew;, with the appropriate value of i determined by
referring to Fig. 4. This gives

s1/sin[A; + e(w, — wy)] =y/sin(8, + ew,)

= R./sin(@r +tew; —Ay)

8)

Sz/sin [A2 + G(W3 - W;)] = Rl/sin(ﬂr + €W3)

=R2/sin(6’ tew, — 4;) .
Note that all three noise terms appear in (8'), as one
would expect.

Proceeding as in Section 111, we obtain equations for

0,, R,,and R,. These are

6, = arcsin {(R /s2) sin[A, + e(ws — wy)] } —ews

(23
cos Ay = (5,2 sin*(8, + ewy)
+‘(R12 —5; %) §sin® [Ay +e(wa —wi)] D)/
{2Rys, sin(8, +ewy) sin[A; +e(ws — w1)] } (24)

R =s; 8in(6, + ewy — A, )/sin[A, +€(Ws — wa)] . (25)

If € = 0, then (23)-(25) reduce to (10), (12), and (15)
respectively. Let8,, R, and R ; be the solutions of
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TABLE 1

Numerical Test of the Three Bearing Method

Emitter o A=A, (R3, 02)

Location (deg) (deg) 51 52 By Three Bearing Method Real Ry, 0,
| e

(-100,100)  -35 -15 51.66 36.7 (714,134.3) (70.7,135)

(100, 100) 55 15 51.66 36.7 (71.4,45.3) (70.7,41)

(100, 200) 37 15 128 594 (48.7,27) (44.5,26)

(200, 100) 73 15 65 24 (153,62) (157, 63)

(~100, -100) 235 -15 52 63 (211, 225) (212, 225)

TABLE 11

Values of Ry by Triangulation and the Three Bearing Method

Emitter Ry by Three R, by

Location Real Ry Bearing Method Percent Error Triangulation Percent Error

(-100, 100) 100.1 100.7 0.6 68.3 46.7

(100, 100) 100.1 100.7 0.6 68.3 46.6

(100, 200) 101.2 105.1 438 182 44 4

(200, 100) 187 184 1.6 213 12.2

(-100,-100) 173 173 0 187 7.5

(10), (12), (15) and set 6, =6  + €f, Ry =R, +ery,
and R, =R, + er,. Differentiating (23)-(25) with respect
to € and setting € = O gives :

ry = (55 COS G_r/sin Ay )Wz + ) — R 5(cot Ay )(ws — wy)

B=(tan Az /s) 1y +(R 1 /s3) (w3 — wa) — w3

r=(A4, — Az)/A;

where

Ay = [s,? sin® —‘9_,+(1$12 ~5,%)sin? 4]

(26)

@7

(28)

- {2R ;s cos 5', sin Ay [R/sy(ws — wy) +wy — ws]

+2R 5, sin 9_’(cos A )(wz —wy)}

A, = (2R_1s, sin 0_, sin A;) 25,2 sin 5, cos O_r wy

+2(R 2 —5,2)sin Ay(cos Ay )wa — wi)]
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A3 =(2R s, sin 6 sin Ay)
+ [2(tan Ay/sy)s;? sin§ , cos B, + 2R, sin® A, ]
—[sy?sin? §,+(R,? —5,?)sin® A]
+ [2s, sin 0—r sin A,
— 2(tan Az/Sz)R—lsl cos (7, sin A, ] 31

Once the statistics of the w; are known, the statistics
of ry, 2, and B can be found in a straightforward manner.
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