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CHAPTER THREE

Evolving in the Community

On your hikes through nature, if you stop and ponder the features of any spe-
cies you encounter, you will quickly realize that many of those features are crit-
ical for how it interacts with its environment. Many traits permit the organism to 
cope with the physical features of the environment it encounters. Waxy cuticles 
of leaves and insects reduce evaporative water loss. Lamellar gills permit aquatic 
insects to extract oxygen from the water.

Other traits shape how the individual will interact with individuals of its own 
and other species. The long proboscis of a butterfly and the extended bill of a 
hummingbird allow them to extract nectar from flowers with long corollas. Snails 
have shells that protect them from many predators, but the crushing pharyngeal 
jaws of a pumpkinseed sunfish permit it to feast on those snails. Tadpoles of many 
frog species have noxious chemicals that make them distasteful to many preda-
tors, but these toxins do not deter the few predators that lack taste receptors for the 
chemicals. Some prey can move rapidly to evade attacking predators, but others 
remain motionless and cryptic in order to not be seen.

The abilities of species to engage in interactions with the environment and 
other species are defined by the phenotypes they possess. Presumably, many 
of these taxa acquired their collection of traits through evolution in response to 
the pressures of natural selection generated by interactions with their physical 
environment and other species in this community. In other words, these species 
evolved traits to exploit the ecological opportunities available to them.

These ecologically important traits are what determine the parameters of the 
models we considered in chapter 2. The butterfly with a longer proboscis will be 
able to extract more nectar from flowers with longer corollas, and will therefore 
have a higher attack coefficient for harvesting this resource. Likewise, a damselfly 
larva that moves very little to remain cryptic will have a lower attack coefficient 
from foraging fish than a damselfly larva that moves more and thus is seen more 
easily by the fish. However, the damselfly larva that moves less will also have a 
lower attack coefficient on its own prey because it encounters them at a lower rate 
than the one that moves more.

Thus, a reciprocity exists between the ecological structure in which a spe-
cies is embedded, and the evolutionary dynamics of it and all the other species 
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NATURAL SELECTION DYNAMICS 77

with which it interacts. The phenotype of a species defines how successful, in 
demographic terms, a species will be in the various interactions in which it must 
engage. These performance abilities in turn are what determine all the parameters 
of the models we considered in chapter 2 that delineate whether the species can 
coexist in a particular community. In addition, variation in demographic success 
among individuals within that species also defines the nature of natural selection 
acting on that species, and so defines the evolutionary trajectory of that species. 
Because all species are evolving in response to one another, we must think of this 
as a coevolutionary dynamic (Thompson 1994, 2005). As one species evolves, 
its demographic impact on other species in the community change, and in turn 
alters their evolutionary trajectories. While coevolutionary dynamics may not 
be ongoing—the system may have reached stable evolutionary equilibria for the 
phenotypes of all species—the interactions among species are what determine 
where these evolutionary equilibria are located. Thus, the reciprocal coevolution-
ary responses among species and the ultimate evolutionary outcomes are defined 
by the ecological structure of the community. The changing nature and abilities of 
the actors in the ecological theater animate the evolutionary play.

THE ECOLOGICAL BASIS OF NATURAL SELECTION

Natural selection, the struggle for existence of different types within a species, as 
first outlined by Charles Darwin and Alfred Russel Wallace (Darwin and Wallace 
1858), is essentially the demography of phenotypes and genotypes within and 
among populations. The process of natural selection has two components (Endler 
1986). The first is phenotypic selection, in which the phenotypic distribution in 
the parental generation is changed because of differential survival or reproduction 
based on the phenotypic properties of individuals (or a collection of individuals if 
higher- level selection is being considered). The second is the genetic response to 
this phenotypic selection.

In most theoretical considerations of natural selection, the focus is placed 
squarely on the mechanisms involved in the genetic response to selection, and 
many simplifying assumptions are made about phenotypic selection and its under-
lying cause. This is typically done so that complex genetic interactions can be 
explored. In general, how the fitnesses of various members of the population are 
determined is ignored completely by merely assigning constant fitness values to 
various genotypes or phenotypes in the population.

However, the fitness of an individual is determined by the ecological conditions 
in which the individual is embedded and will therefore change as those ecological 
conditions change. Consequently, the relationship between fitness and phenotype 
has dynamics that are governed by the ecology of the system. “The ecology of the 
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78 CHAPTER 3

system” is not some external set of conditions imposed on these species but rather 
is defined by how the phenotypes of the interacting species determine the parame-
ters of their interaction. For example, the ability of a dragonfly to catch a damsel-
fly depends on the phenotypic traits of these two individuals, and the population 
level parameters determining the attack coefficient of the dragonfly predator on 
its damselfly prey depend on the distribution of phenotypes in the populations of 
both these interacting species.

Moreover, as the phenotypic distribution of one species evolves, the fitness con-
sequences of interacting with that species will also change. If over one generation the 
damselfly population evolves to swim faster because of selection pressures imposed 
by dragonfly predation, in the next generation, the attack coefficient between this 
predator and prey will be smaller. As a result, the fitnesses of dragonflies with a 
particular value of a phenotypic trait for feeding on these damselflies will decrease. 
If the dragonfly population then evolves to be faster at pursuing the damselfly in the 
next generation, the attack coefficient between them will increase again.

These considerations lead inexorably to the conclusion that the ecological 
dynamics of the evolutionary process are fundamental to understanding the out-
comes of that process. Therefore, in the analyses presented here, I turn the tables 
by allowing the ecological mechanisms defining natural selection to have full reign, 
and having the simplifying assumptions made about the genetics of the system. This 
is in essence the basis of quantitative genetic analyses (Falconer and Mackay 1996, 
Lynch and Walsh 1998). Thus, I focus on how the ecological dynamics of natural 
selection influence what will coevolve in a community of interacting species.

For natural selection to occur, three criteria must be met. First, some trait or 
traits expressed by individuals in a population must influence their survival or 
reproduction (i.e., their fitness). Second, individuals in the population must vary in 
these traits that cause fitness differences among them. Third, these trait differences 
must have a heritable genetic basis. The first and second criteria identify the con-
ditions needed for phenotypic selection to occur, and the third criterion establishes 
that the population will genetically change in response to phenotypic selection.

The general term “fitness” is used in many, many different ways, and the 
debate about what is the “correct” fitness measure to consider often obscures the 
issues more than clarifies. When the ecological dynamics of natural selection are 
explicitly explored, the absolute fitness of an individual is the foundational metric 
underlying the dynamics of selection. This is because absolute fitness is the cen-
tral mediating parameter between the evolutionary dynamics caused by natural 
selection and the demography of a population. Absolute fitness is defined as the 
number of offspring contributed to the next generation by an individual.

An individual’s absolute fitness is the demographic consequence of the 
interaction of the individual’s phenotype with its ecological environment. The 
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NATURAL SELECTION DYNAMICS 79

environment includes the abiotic conditions experienced by the individual as 
well as all the interactions with conspecifics and other species. Fundamentally, 
absolute fitness is an ecological property. If all individuals in a population have 
identical phenotypes, the fitness of each individual would precisely describe the 
dynamics of the population. In other words, the overall dynamics of the popula-
tion would be simply the fitness of each individual times the number of individu-
als in the population, or

 ( )ln Wdt
dN

N N N dt
dN

i
i

i i
i

i= = , (3.1)

where N
i
 is the number of individuals in the population of species i, and ( )ln Wi  

is the logarithm of the absolute fitness of each individual; this product is equiva-
lent to the per capita population growth rate dN N dti i  (see chapter 2). (Because 
the modeling framework utilized here is a continuous time frame using differen-
tial equations, absolute fitness is measured on a log scale, where individuals are 
just replacing themselves at W 1i =  so that ( )ln W 0i = .) One interpretation of these 
equations implies that the population dynamic models used in chapter 2 assume 
that each species is composed exclusively (or at least predominantly) of only one 
phenotype. (See table 3.1 for a complete list of state variables and parameters 
used in models in this chapter.)

However, a little algebra shows that even if the population is composed of 
individuals that vary in their demographic rates because their phenotypes vary, the 
overall population growth rate has a rational interpretation. First, define the num-
ber of species i individuals having phenotypes in the infinitesimal range z dzi i  to 
be ( )zn ii , total population size to be ( )zN n dzii i i= y , and the absolute fitnesses of 
individuals in this infinitesimal phenotypic range are ( )zW ii  (as in Lande 2007). 
The total population growth rate is then given by

 ( ) ( ( ))lnz W zdt
dN

n dzi i i
i

i i= y . (3.2)

Defining the frequency of individuals in each narrow phenotypic range to be 
( ) ( ) /z zp n Ni ii i i= , we can arrange this equation to be

 ( ( )) ( ) ( ( ))( ) ln lnz W z z W zdt
dN

N
N

n dz N p dzi i i i i i
i

i

i
i i i i i= =y y . (3.3)

The integral in this equation is the average fitness in the population: 
( ) ( ) ( ( ))ln lnW p z W z dzi i i i i i=r y . For completeness, this means that

 ( ) ( ( )) ( )ln lndt
dN

N p z W z dz N W N N dt
dNi

i i i i i i i i i
i

i= = =ry . (3.4)
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80 CHAPTER 3

Table 3.1. Additional state variables and parameters in the evolutionary models  
of species interactions presented. Variables and parameters that are common  
to multiple species types are shown for only the resource species. All other  

variables and parameters are as listed in table 2.1.  

State Variable Description

z
R
, z

N
, z

P
 Traits of the resource, consumer, and predator species, 

 respectively

, ,z z zR N Pr r r  Mean trait values of species

( ), ( ), ( )R z N z P zR N P  Population abundances of species with the associated trait 
values

( ), ( ), ( )W z W z W zR R N N P P  Absolute fitnesses of species with the associated trait values

z zN R∆= −  Difference between the consumer and resource trait values

z zP NΩ= −  Difference between the predator and consumer trait values

z zP RΣ= −  Difference between the predator and resource trait values

Parameter Description

, ,V V Vz z zR N P
 Additive genetic variation for traits in the three species

c
0
 Maximum value for the resource species’ intrinsic birth rate

zR
cu  Optimal trait value for the intrinsic birth rate of the resource 

species

 Scaling parameter for the underlying selection strength on the 
resource’s intrinsic birth rate

d Density-dependent rate of decrease in the resource’s birth rate 

f
0
, x

0
 Minimum value for the intrinsic death rates of the consumer 

and predator, respectively

,  Scaling parameters for the underlying selection strengths 
on the intrinsic death rate of the consumer and predator, 
 respectively

g, y Density-dependent rates of increase in the intraspecific death 
rates of the consumer and predator, respectively

,z zN
f

P
xu u  Optimal trait value for the intrinsic death rates of the consumer 

and predator, respectively

a
0
 Maximum value of the attack coefficient of the consumer 

 feeding on the resource

i , a, b Scaling parameters for the rate of change in the attack 
coefficient of the consumer feeding on the resource for the 
unidirectional-independent, unidirectional-dependent, and 
bidirectional- dependent trait interactions, respectively

m
0
 Maximum value of the attack coefficient of the predator 

 feeding on the consumer 

(continued)
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NATURAL SELECTION DYNAMICS 81

In words, the per capita population growth rate of the population is equivalent to the 
average fitness of individuals in the population: ( )lndN N dt Wi i i= r  (Lande 2007).

In chapter 2, we saw how the population growth rate of a species was influ-
enced by interactions with other species in the local community, but none of the 
species could evolve in response to one another. Equation (3.4) implies that these 
influences are mediated through their effects on the absolute fitnesses of individ-
uals that constitute the local population of that species. Moreover, because the 
fitnesses of those individuals are determined by how their phenotypes demograph-
ically translate these interactions into absolute fitness, overall population growth 
rate depends on the phenotypic composition of the population, ( )p zi i . The per 
capita population growth rate is the average absolute fitness of individuals in the 
population. Given these relationships, it should be apparent that we can use the 
ecological machinery describing the population dynamics of interacting species 
from chapter 2 as a descriptor of how species interactions influence the absolute 
fitness of each species within a local community, and thus the ecological dynam-
ics of natural selection for each. This provides the fundamental link between eco-
logical and evolutionary dynamics, since the basis of both are defined by how 
ecological interactions shape absolute fitness.

If we expand our expression for absolute fitness to represent all the influential 
species interactions, the complexity of fitness dynamics becomes apparent. For 
example, in this framework we can represent the per capita effects of various spe-
cies interactions on the absolute fitnesses of individuals with phenotype z

i
 within 

species i as

 ( ( )) ( ) ( , )ln W z N p z f z z dzi i j j j ij i j j
j

= / y . (3.5)

Table 3.1. (continued)

State Variable Description

i , ,  Scaling parameters for the rate of change in the attack coeffi-
cient of the predator feeding on the consumer for the unidirec-
tional-independent, unidirectional-dependent, and bidirection-
al-dependent trait interactions, respectively

v
0
 Maximum value of the attack coefficient of the predator feed-

ing on the resource

i , ,  Scaling parameters for the rate of change in the attack coeffi-
cient of the predator feeding on the resource for the unidirec-
tional-independent, unidirectional-dependent, and bidirection-
al-dependent trait interactions, respectively
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82 CHAPTER 3

Here ( , )f z zij i j  are functions describing the per capita effect of various pheno-
typic classes within species j on the absolute fitness of an individual of species 
i, and ( )p zj j  are the frequencies of individuals in the various phenotypic classes. 
These per capita effects may depend on the phenotypes of both species. Note that 
equation (3.5) includes both the effects of species i on itself (i.e., intraspecific 
effect when j = i) and the effects of other species on species i (i.e., interspecific 
effects when j ≠ i). The effect of species j on the fitness of individuals of species 
i represents a fitness component that contributes to the overall absolute fitness 
of species i. Fitness components are typically considered to be associated with 
life stages, but this interpretation separates fitness into components due to the 
action of different selective agents on various demographic rates (e.g., survival of 
resource i due to predation by consumer j).

Equation (3.5) also describes the fitness surface defined by the ecological envi-
ronment in which the population of species i is embedded at any given instant. 
This equation immediately identifies that the shape of the fitness surface of each 
species will vary with both the phenotypes and abundances of all species in the 
community, meaning that analyses of natural selection that assume fixed fitnesses 
associated with various types (genotypes or phenotypes) in the population ignore 
the rich ecological dynamics that govern the process. This equation also high-
lights the fact that the shape of the overall fitness surface depends on the contri-
butions of the various underlying fitness components (Arnold and Wade 1984b, 
Travis 1989, Wade and Kalisz 1990, McPeek 1996a). The relative importance of 
each species interaction to determining the shape of the overall fitness surface will 
depend on both the magnitudes of the per capita effects and the abundances of the 
various species.

Many different modeling approaches can be taken to explore the dynamics 
of trait change in interacting populations. In principle, one could take a popu-
lation genetic approach, but this becomes exceedingly opaque and cumbersome 
when fitnesses are density and frequency dependent (Nagylaki 1992), which is 
why I will make simplifying assumptions about the genetics of the system. An 
alternative that has many appealing features is the adaptive dynamics approach 
(Dieckmann and Law 1996, Doebeli 2011). With adaptive dynamics, a population 
is assumed to contain one genetic type of individual. At each step in time, indi-
viduals with slightly different phenotypes (and genotypes) are assumed to invade 
the population at low frequency (e.g., as mutations from the dominant type), and 
the population changes if these invading individuals have fitnesses higher than the 
dominant type. Adaptive dynamics approaches have been applied to questions of 
behavioral choice among individuals in a population (e.g., Eshel 1981a, 1981b), 
adaptive evolution in interacting species (e.g., Dieckmann and Law 1996), and 
sympatric speciation (e.g., Doebeli and Dieckmann 2000).
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NATURAL SELECTION DYNAMICS 83

I will utilize the approach developed by Lande (1982) and elaborated by Iwasa 
et al. (1991) and Abrams et al. (1993) (see also Lande 2007, Barfield et al. 2011), 
which models the evolution of quantitative traits in the same framework used by 
empirical biologists to study natural selection in the wild (Lande 1979; Lande 
and Arnold 1983; Arnold and Wade 1984b, 1984a). Thus, results of these anal-
yses should provide testable predictions about species interactions and natural 
selection that can be directly tested in the field. Under the standard assumptions 
of the genetic basis of quantitative traits (i.e., many loci, each of small effect) and 
of traits and breeding values being normally distributed, the dynamics of natural 
selection are closely approximated by the dynamics of the average phenotypic 
trait value in the population ( )zir ; since population dynamics are defined by the 
average fitness (equation (3.5)), this assumption further associates the average fit-
ness of the population with the average phenotype in the population (Lande 1982, 
2007). This framework can be further simplified by assuming that the effects of 
interactions with species j are primarily defined by the effects of individuals with 
the average phenotype ( )zjr . Thus, equation (3.5) becomes

 ( ( )) ( , )ln W z N f z zi i j ij i j
j

= r/ . (3.6)

In this framework, the evolutionary dynamics of the mean trait in the popula-
tion is given by

 
( ( )) ( , )ln

dt
dz

V z
W z

V N z
f z z

i
z

i

i i

z z
z j

i

ij i j

j z z
i

i i

i

i i

2
2

2

2
= =

= =

r r

r r

f p/ , (3.7)

where the partial derivatives with respect to z
i
 are evaluated at the mean trait value 

zir , and Vzi
 is the additive genetic variance among individuals in the population for 

the trait (Lande 1982, Iwasa et al. 1991, Abrams et al. 1993). The appendix in 
Iwasa et al. (1991) provides a clear and lucid presentation of the assumptions and 
derivation of this approach. The entire summation in parentheses of equation (3.7) 
is the overall selection gradient on the phenotype—this is the dynamical descriptor 
of phenotypic selection. This quantity defines the overall strength and direction 
of natural selection on the average phenotype. Each term in this summation is the 
selection gradient associated with each fitness component of the species, which 
defines the strength and direction of phenotypic selection impinging on each.

Equation (3.7) can be used to describe changes in the trait caused by either 
adaptive evolution across generations of a population or the adaptive plasticity of 
individuals (i.e., individuals modify their phenotype in response to environmental 
conditions) within a generation. For adaptive evolution, Vzi

 represents the additive 
genetic variation in z

i
 and defines the rate of the genetic response to phenotypic 
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selection, and its value is set to a small value (Lande 1982, Abrams et al. 1993). 
For adaptive plasticity, Vzi

 is set to a large value, so that trait changes occur very 
quickly, or assumes a more complex functional form (Abrams et al. 1993). Thus, 
this framework can be used to explore both trait- mediated indirect effects of spe-
cies interactions via adaptive plasticity (Werner and Peacor 2003, Křivan and 
Schmitz 2004, Ohgushi et al. 2013) and adaptive evolution (Lande 1982, Iwasa et 
al. 1991). The results are typically much the same.

Interpreted as a model of adaptive evolution, as I do here, equation (3.7) is 
simply a continuous time version of the standard breeders’ equation describing 
the change in a quantitative trait due to natural or artificial selection (Lande 1979, 
Lande and Arnold 1983, Arnold and Wade 1984b, Lande 2007). Obviously, this 
derivation ignores within- population variation in phenotypes (e.g., Slatkin 1980, 
Taper and Case 1985, Price and Kirkpatrick 2009, Schreiber et al. 2011), and 
assumes that the dynamics of the mean trait value is a good approximation for the 
dynamics of evolution by natural selection (Lande 1982, 2007). Equation (3.7) 
can be extended to multivariate phenotypes (Lande 1982) and complex life cycles 
(Barfield et al. 2011), but for my purposes here, the main points can be made by 
considering only one trait per species with a simple life cycle. I will leave it to 
the reader and to future analyses to explore more complicated phenotypes and life 
histories in the contexts I explore here.

Equation (3.7) also identifies another key feature of the dynamics of natural 
selection that is little appreciated in the general literature—namely, the dynamical 
equilibria of natural selection (the peaks and nadirs of the fitness surface) also 
depend on the relative strengths of selection gradients operating separately on the 
various fitness components for each species. Each term in the summation in equa-
tion (3.7) describes how the contribution of that fitness component changes with a 
modification in the traits and abundances of all the species in the community; the 
magnitude of the selection gradient associated with a fitness component is the mea-
sure of the strength of selection on that same fitness component. This implies that 
the phenotypic trait value that is favored by selection overall will be more influ-
enced by fitness components that experience stronger selection (McPeek 1996a). 
At an evolutionary equilibrium, whether it is stable or unstable, the various selec-
tion gradients must balance, and hence the selection strengths on the various fitness 
components weighted by the abundances of the interacting species must sum to 
zero (i.e., the terms in parentheses of equation (3.7) must sum to zero).

This framework also highlights that the members of a community evolve in a 
coevolutionary context that depends on both the abundance dynamics and trait 
dynamics of the interacting species. In a theoretical context, the entire system 
may reach a point equilibrium where all abundances and traits approach a single 
point in multidimensional abundance–trait space. At this point, each species will 
have a mean phenotype that gives W z 0i i2 2 =  as either a fitness maximum or 
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NATURAL SELECTION DYNAMICS 85

fitness minimum on its adaptive surface that balances the contributions of the 
various fitness components to overall fitness (Abrams et al. 1993, Abrams and 
Matsuda 1997a). Our usual notion that natural selection moves populations uphill 
on the fitness surface implies a fitness maximum, but frequency- dependent selec-
tion generated by species interactions can cause stable fitness minima in some 
cases. Abrams et al. (1993) have illustrated the conditions where a stable fitness 
minimum for a species will result. A system may also express stable limit cycles 
in which both population abundances and trait values fluctuate through time 
(Abrams and Matsuda 1997b, Yoshida et al. 2003), as I will illustrate below.

As we will see, this framework clearly exposes the underlying drivers of the 
ecological dynamics of natural selection. The average fitness of the population 
changes as the mean trait value in the population alters, but average fitness also 
changes because the species’ abundance as well as the traits and abundances of all 
the species with which it interacts also all change. Consequently, the fitness topog-
raphy against which each species evolves may change continuously as species 
coevolve. Models that focus on genetic dynamics attempt to capture these fitness 
dynamics in formulations of density and frequency dependence, and various fla-
vors of hard and soft selection (Levene 1953, Dempster 1955, Christiansen 1975, 
Nagylaki 1992, Charlesworth 1994). However, I think translating the processes to 
be considered here into those terms only obscures the ecological processes that 
produce natural selection. Previous analyses that utilize this more mechanistic 
approach to natural selection and coevolution have illustrated how fitness surfaces 
change as selection proceeds, but most have focused primarily on the evolutionary 
outcomes (e.g., Taper and Case 1985; Abrams et al. 1993; Abrams 2000; Abrams 
and Chen 2002; Abrams 2006; Price and Kirkpatrick 2009; Abrams and Fung 
2010a, 2010b). In what follows, I will consider coevolution in many different 
types of community modules, and I will focus as much on the underlying causes 
of the ecological dynamics of natural selection as on the ultimate outcome.

Thus, the ecological opportunities available to species will change not only as 
the overall community structure changes through species additions and deletions 
(i.e., chapter 2), but also as the phenotypes and abundances of the species filling 
various community roles change. An ecological opportunity represents both an 
ecological role to fill in a community and an evolutionary outcome of adapting to 
the community.

TYPES OF TRAITS

The linkage between ecological and evolutionary dynamics is specified by how 
the traits of an individual interact with its environment to determine its overall 
fitness. Therefore, this framework also needs a mechanistic description of how 
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the traits of individuals influence the various components of their absolute fitness. 
Many phenotypic traits of an organism may simultaneously influence its survival, 
growth, and fecundity. Some traits may be almost universally important; body size 
comes to mind as one such trait. However, even body size is not so important in 
every facet of demography and life history for every species (Harmon et al. 2010). 
Because the ecologically important traits contribute to determining the absolute 
fitness of the organism, small changes in the value of any one would result in 
a change in overall fitness. Mathematically, this means that in equation (3.7), 

( , )f z z z 0ij i j i2 2 !r  over much of the possible range of trait values. All aspects of the 
morphology, physiology, and behavior of an organism can potentially influence 
its demographic performance, and each ecologically important trait may influence 
absolute fitness through its simultaneous effects on multiple fitness components.

The effect of a phenotypic trait on a particular fitness component can take many 
functional forms, depending on the mechanism of the interactions between indi-
viduals and populations. However, all can be categorized by two general proper-
ties. The first is whether the fitness component changes in the same direction with 
changes in the trait over its entire range. If a phenotypic change in one direction 
increases a fitness component over the entire phenotypic range, I will refer to it as 
a unidirectional trait (following Abrams 2000). This trait is experiencing direc-
tional selection (i.e., ( , )f z z z 0ij i j i2 2r  or ( , )f z z z 0ij i j i2 2  for all z

i
) for this fitness 

component over its entire phenotypic range, although the strength of the selection 
gradient (i.e., the magnitude of change in the fitness component with a unit change 
in the trait) may vary. Many different interactions are governed by unidirectional 
traits. For example, increasing the amount of time spent in its burrow should always 
decrease the probability of a rabbit being killed by a fox, and the more time spent 
hunting by the fox should increase the number of rabbits it catches. Escape speed is 
also a common example; if the prey can run or swim faster than the pursuing pred-
ator, the prey will have a greater chance of escape, but if the predator can run faster 
than the prey, the prey will likely be caught when attacked. Other examples are 
interactions in which the consumer is gape limited so that it cannot eat a resource 
above a certain size. Prey morphological defenses such as spines, slime, armor, and 
shells are also unidirectional traits in interactions with predators.

Alternatively, a trait may have a reversal in the directionality of change in some 
fitness component with trait change over different ranges of the phenotype; that 
is, ( , )f z z z 0ij i j i2 2r  over some phenotypic range, but ( , )f z z z 0ij i j i2 2r  over 
another range. Such a trait must, therefore, have either a fitness component max-
imum or minimum at some trait value (i.e., where ( , )f z z z 0ij i j i2 2 =r ). Such traits 
have been termed bidirectional, because the fitness component increases with 
increasing trait values over one range but decreases with increasing trait value 
over another range (Abrams 2000). If the population’s trait distribution includes 
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NATURAL SELECTION DYNAMICS 87

a fitness component maximum, the population experiences stabilizing selection 
from that component; whereas if the population’s trait distribution includes a fit-
ness component minimum, the population experiences disruptive selection from 
that component. If the population’s trait distribution does not include the fitness 
maximum or minimum, it would experience directional selection. For example, 
consider a bird population feeding on the seeds of a plant that vary in size. Very 
small and very large seeds will have higher survival than seeds that closely match 
the sizes that are best manipulated and eaten using the bird’s bill. The gill rakers 
of fish that are used to strain food particles from the water are also most efficient 
on a particular size of prey. In these cases, the consumer’s feeding structure is 
most efficient on a particular size of resource, and the consumer is less efficient at 
feeding on resources that are both smaller and larger than this optimal size.

Traits also differ in whether their effect in determining the value of some fitness 
component does or does not depend on the trait value of another species; these 
are dependent or independent traits, respectively. For example, the contribution 
of swimming speed to determining a damselfly’s survival under dragonfly preda-
tion cannot be determined without knowing how fast the dragonfly can strike and 
chase. Likewise, the contribution of size to determining a seed’s survival under 
bird predation is unknown until one also knows the birds’ bill sizes. These would 
both be dependent traits with respect to survival under predation. The contribu-
tion to determining the value of some fitness component by an independent trait 
does not depend on the trait values of other species. Increasing the time spend 
in a burrow will proportionally increase a rabbit’s survival to a similar degree, 
regardless of the fox’s phenotype. This does not mean that the fox’s phenotype 
will have no influence on the rabbit’s survival; it only means that the contributions 
of the rabbit and fox phenotypes to the rabbit’s survival can be conceptually and 
mathematically partitioned in this trait. For dependent traits, this conceptual and 
mathematical partitioning cannot be done, because the contribution to the fitness 
component depends on the difference or ratio of the phenotypes of the interacting 
species (when measured on appropriate scales). Thus, we might expect frequency- 
dependent selection to be much more likely when dependent traits underlie a spe-
cies interaction.

These categorizations highlight the dynamical nature of natural selection 
affecting the traits of interacting species. The relationship between fitness and 
the phenotype (i.e., the fitness surface as defined by equation (3.6)) is not a static 
feature of the environment, but rather has a dynamic that depends on both the 
abundances and traits of other interacting species. When dragonflies are rare, the 
fitness surface experienced by a damselfly population may have the same funda-
mental shape as when dragonflies are common; however, the height of the surface 
will be different in these two cases, because the rate at which dragonflies are 
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attacking damselflies will change with dragonfly abundance. The rate at which 
fitness changes at a given difference in swimming speed (i.e., the strength of the 
selection gradient) will also increase with the number of foraging dragonflies. 
Additionally, the shape of the fitness surface will differ between damselfly pop-
ulations that face slow versus fast dragonflies. The dynamics of this relationship 
drive coevolution between species; this occurs when an evolutionary response in 
one species changes the form and intensity of selection on its interaction partner 
and thereby causes an evolutionary response, which in turn changes the form and 
intensity of selection on the first species, and so on (Thompson 1994).

Any particular trait may also influence the values of multiple fitness compo-
nents. Size may affect the survival of a seed in the face of predators, but seed size 
may also influence the probability that the resulting plant survives the seedling 
stage of its life history. Increasing speed to chase down fleeing prey may decrease 
other components of fitness in the dragonfly. These multiple fitness effects may 
produce synergies (change in the trait causes two fitness components to increase 
or decrease) or trade- offs (change in the trait causes one fitness component to 
increase and the other to decrease) among various fitness components as they con-
tribute to determining the shape of the overall fitness surface (Arnold and Wade 
1984b). Also, the categories in which a trait falls (i.e., independent or dependent, 
unidirectional, or bidirectional) will typically differ among the fitness compo-
nents it influences. For example, seed size may be a bidirectional- dependent trait 
with respect to seed predation, but a unidirectional- independent trait with respect 
to seedling survival.

DYNAMICS OF NATURAL SELECTION  
IN A VERY SIMPLE COMMUNITY

With this conceptual framework completed, we now need to actualize the simul-
taneous dynamics of abundances and traits that result from species interactions. 
Here, the focus will be on the interactions among consumers and resources to 
build on the purely ecological analyses presented in chapter 2. Let us begin 
by considering the interaction between one resource and one consumer. Also, 
assume that only one trait is ecologically important for each species (z

R
 for the 

resource and z
N
 for the consumer), and these traits influence both their per capita 

birth and death rates. Furthermore, their coevolutionary dynamics result from the 
functional response of their interaction, which is influenced by the traits of both 
species simultaneously. These per capita birth and death rates for each species 
are the separate components of absolute fitness that will define their evolutionary 
dynamics.
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Using the basic models developed in chapter 2 to describe their population 
dynamics, the absolute fitnesses of individuals with specified trait values for an 
interacting consumer and resource species, respectively, are
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(Because only one species is present per trophic level, I will forego subscripts to 
identify species in this chapter.) In this formulation, the parameters of the model 
are functions of the traits. Note that the denominator of the resource’s functional 
response is a function of the average trait values of both species; this is because 
the consumer species overall is satiated primarily by resource individuals with 
the average trait value. In contrast, the denominator of the consumer’s functional 
response depends on the average trait value of the resource species but the actual 
trait value of the consumer individual; this is because a consumer individual’s 
level of satiation is based on that individual’s trait value (Abrams 2000). When 
evaluated at the current average trait value for each species, equations (3.8) gov-
ern the population dynamics of these species:
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Equations (3.9) also define the landscapes of average fitness against mean trait 
values and species abundances for these two species when expressed in their per 
capita forms (e.g., dN Ndt ). The equations governing trait dynamics are then 
given by substituting equations (3.8) into (3.7):
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The first term in each equation is the strength of the selection gradient on the 
respective species’ birth fitness components, and the second term in each equation 

This content downloaded from 
�������������169.236.1.253 on Tue, 17 Aug 2021 19:06:03 UTC������������� 

All use subject to https://about.jstor.org/terms



90 CHAPTER 3

is the strength of the selection gradient on their death fitness components. These 
yield
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Given these equations governing changes in abundances and trait means, all 
that is left is to specify the functional forms for how the parameters in the model 
depend on the traits of the species. As intuition would suggest, the different cat-
egories of traits have somewhat different effects on abundance and trait dynam-
ics and different capabilities for how species may respond to different types of 
interactions. Even within a trait category, many different functional forms may be 
appropriate for different types of traits influencing different fitness components. 
Moreover, traits may be tied to various combinations of fitness components in dif-
ferent ways. An exhaustive analysis of various trait combinations is impossible to 
present. Here, I focus on a smaller set of trait combinations and functional forms, 
highlighting the resulting differences between different trait types to illustrate the 
major features of adaptive evolution that occurs as a result of species interactions.

Throughout this analysis, I will assume the resource’s intrinsic birth rate, ( )c zR , 
and the consumer’s intrinsic death rate, ( )f zN , are bidirectional- independent traits 
(fig. 3.1A and B, respectively).

I will use a quadratic function for the intrinsic birth rate of the resource:

 ( )zc c z z1R R R
c

0
2γ= − − u^ ^ h h. (3.12)

In this equation, the resource’s intrinsic per capita birth rate has a maximum value 
of c

0
 at its intrinsic birth rate optimum of z zR R

c= u  and declines with larger devi-
ations of the trait value from this optimum (fig. 3.1A). The parameter  mediates 
the underlying strength of selection on z

R
 due to the birth fitness component—the 

rate at which the intrinsic birth rate declines away from zR
cu  with change in z

R
. 

Therefore, z
R
 experiences overall stabilizing selection from the birth fitness com-

ponent, and the strength of this stabilizing selection increases with increasing .
In analogous fashion, the intrinsic per capita death rate of the consumer is 

assumed to follow a quadratic function,

 ( )zf f z z1N N N
f

0
2θ= + − u_ ^ h i, (3.13)
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Figure 3.1. Functional forms used for the relationships between species trait values and param-
eters in the models. In each panel, the shape of the function for three different values of the 
tuning parameter that defines the underlying selection strength is shown. The functions are 
for the following trait types: (A) bidirectional- independent trait used for the resource intrinsic 
birth rate, (B) bidirectional- independent trait used for the consumer and predator intrinsic death 
rates, (C) unidirectional- independent traits defining the attack coefficients, (D) unidirectional- 
dependent traits defining the attack coefficient, and (E) bidirectional- dependent traits defining 
the attack coefficients.

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50 60M

ul
tip

le
 o

f m
ax

im
um

fo
r c

(z
R
)

ZR

A. Bidirectional independent B. Bidirectional independent

E. Bidirectional dependent

D. Unidirectional dependentC. Unidirectional independent

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20 25 30

β = 50
β = 20
β = 8

M
ul

tip
le

 o
f m

ax
im

um
fo

r a
(z

N,
 z R

)

Δ = ZN – ZR

20

16

12

8

4

0
0 10 20 30 40 50 60M

ul
tip

le
 o

f m
ax

im
um

fo
r f

(z
N)

ZN

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50 60

ε = 0.5
ε = 8
ε = 40

M
ul

tip
le

 o
f m

ax
im

um
fo

r a
(z

N,
 z R

)

ZN or ZR

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20 25 30

α = 0.05
α = 0.2
α = 0.9

M
ul

tip
le

 o
f m

ax
im

um
fo

r a
(z

N,
 z R

)

Δ = ZN – ZR

θ = 0.001
θ = 0.01
θ = 0.1

γ = 0.001
γ = 0.01
γ = 0.1

This content downloaded from 
�������������169.236.1.253 on Tue, 17 Aug 2021 19:06:03 UTC������������� 

All use subject to https://about.jstor.org/terms



92 CHAPTER 3

where z zN N
f= u  is the phenotype that minimizes the consumer’s intrinsic death rate 

(i.e., its intrinsic death rate optimum), f
0
 is the value at this minimum, and  medi-

ates the underlying strength of selection on z
N
 due to the death fitness component—

the rate at which predator death rate increases away from zN
fu  with change in z

N
 (fig. 

3.1B). Therefore, z
N
 also experiences stabilizing selection from the death fitness 

component and the strength of stabilizing selection increases with increasing .
The attack coefficient describing the per capita rate at which the consumer kills 

resource individuals is what generates the coevolutionary dynamics in this model. 
The attack coefficient can assume any of the various types of traits, depending on 
the specific traits involved in the consumer- resource interaction. In this analysis 
I consider three of the possible types. I neglect bidirectional- independent traits 
as a basis for the attack coefficient because trade- offs among fitness components 
cause the attack coefficient to rarely settle at the optimal value for the attack coef-
ficient, and so the dynamics are in the end quite comparable to unidirectional- 
independent traits. Therefore, in the independent category, I present results only 
for unidirectional- independent traits defining attack coefficients.

First, many traits of interacting species have unidirectional- independent effects 
on their fitnesses and thus on the parameters in the model, and they can take myr-
iad functional forms. For the analyses discussed here, imagine that z

R
 is a trait 

such as prey activity that affects the resource’s exposure or conspicuousness to 
its consumers, and z

N
 is also a trait such as activity in which greater movement 

in the consumer increases its exposure to resources. Furthermore, assume that 
the attack coefficient is zero when z z 0R N= =  and increases asymptotically to a 
maximum value of a

0
 as z

R
 and z

N
 increase. An equation with this general form is 

the Michaelis- Menten equation (Michaelis and Menten 1913),

 ,a z z a z
z

z
z

R N
R R

R

N

N

N
0 ε ε= + +^ ^ ^h h h, (3.14)

where a
0
 is the asymptotic maximum, ( )zz R RR ε +  is the independent effect that 

the resource trait has on the attack coefficient, and ( )z zN N Nε +  is the independent 
effect of the consumer’s trait on the attack coefficient (fig. 3.1C). The parameter 

R  is the underlying strength of selection on the attack coefficient via how fast the 
attack rate increases with z

R
; N  does the same for z

N
 (fig. 3.1C).

When the consumer–resource interaction is influenced by traits such as eva-
sion speed in the resource and pursuit speed in the consumer, the resource and 
consumer have unidirectional- dependent traits as their effects on the attack coef-
ficient. Traits such as these are unidirectional because changes in only one direc-
tion increase the fitness contribution of this component for each species, but the 
difference between the trait values of the interacting species determine the fit-
ness contribution to each. To model this type of trait combination determining the 
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NATURAL SELECTION DYNAMICS 93

attack coefficient, the difference between the consumer and resource trait values 
are z zN R∆ = − , and I use a logistic function to describe the attack coefficient

 ,a z z
e

a
1R N

0=
+ α∆−^ h , (3.15)

where a
0
 is again the asymptotic maximum and a defines the steepness of the tran-

sition from low to high values around 0∆=  (fig. 3.1D). In the case of pursuit and 
evasion speeds, if the resource can run much faster than the consumer, D will be a 
large negative number, and so the attack coefficient will be near zero. In contrast, 
if the consumer can run substantially faster than the resource, D will be a large 
positive number, and the attack coefficient will be near a

0
. For such traits, this 

interaction will continually apply directional selection for larger trait values to the 
death fitness component of the resource and to the birth fitness component of the 
consumer, and the strength of selection will increase with increasing a.

Finally, consider the consumer- resource interaction when the attack coefficient 
is influenced by bidirectional- dependent traits, such as bird bill size and seed size. 
In this case, the maximal attack coefficient occurs when the traits exactly match 
one another to give 0∆=  (when measured on appropriate scales), and declines 
away from this point in both directions. I use a Gaussian function to model the 
attack coefficient for these traits of

 ,a z z a eR N 0

2

= β
∆−^ ch m , (3.16)

where a
0
 is again the maximum, and b controls the steepness of decline away from

0∆=  in both directions (i.e., the strength of selection around 0∆= ); see figure 
3.1E. The attack coefficient will be near zero if the resource trait is very large or 
very small relative to the consumer trait (i.e., |D| 0& ), and will be near a

0
 when 

the traits of the two species closely match (i.e., D 0. ). The form of selection 
experienced by the traits will also differ depending on the magnitude of the dif-
ference between them. When the species are similar (i.e., D 0. ), the consumer 
trait will experience stabilizing selection on its birth fitness component, and the 
resource trait will experience disruptive selection on its death fitness component. 
However, if the difference in trait values of the two species is large, they will 
experience directional selection in the same direction from this interaction on 
their respective fitness components.

The isoclines for R, N, zRr , and zNr  are complicated functions of population 
abundances and trait values, and so analytical solutions to the various models 
considered here are not possible. The following results are, therefore, based on 
extensive numerical simulations. The Matlab® code used for these simulations is 
available at http:// enallagma .com /EvolutionaryCommunityEcology.
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Throughout, I will illustrate the underlying mechanics of these models in 
features that are familiar to empirical ecologists and evolutionary biologists—
namely. isoclines in phase portraits that drive abundance dynamics (e.g., fig. 2.2), 
and fitness surfaces that illustrate the relationship between fitness and phenotype. 
I do not intend this presentation as an exhaustive exploration of parameter space, 
but rather I will highlight the key dynamics and the drivers of those dynamics 
to expose the importance of the interplay between ecological and evolutionary 
dynamics.

I hope those who are interested in mutualisms will forgive me if I do not 
explicitly consider the evolution of mutualistic interactions here. Because of the 
length of this presentation, I am unable to consider that here. However, as I hope 
chapter 2 illustrated, many mutualistic interactions are really no different than 
consumer- resource interactions in understanding the properties of invasibility and 
coexistence. Preliminary analyses indicate that this is true for their evolution as 
well. I look forward to future analyses of the evolution of mutualisms with explicit 
trait mechanisms included.

THE DYNAMICS OF COEVOLUTION

When only one resource and one consumer are interacting, the fundamentals of 
coevolutionary dynamics are similar for all types of traits—independent or depen-
dent, unidirectional or bidirectional—that define the nature of their interaction. 
Therefore, I will expound the central features of coevolution in this simplest of 
communities with a bidirectional- dependent trait defining the attack coefficient, 
as described by equation (3.16). The joint ecological and evolutionary dynamics 
of the system are then given by the following set of equations:
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This system is too complex to evaluate analytically. The results presented below 
summarize a thorough exploration of parameter space using numerical simulations.

To develop deeper insights on the interplay between ecological and evolution-
ary dynamics, first consider the following very simple case. Imagine an island 
inhabited by a plant species (resource), and a seed- eating bird species (consumer, 
perhaps a Darwin’s finch) invades and feeds on this plant’s seeds. Initially, the 
resource species is adapted to a community lacking the consumer (i.e., it begins 
with its phenotype at its intrinsic birth optimum, which is .z 10 0R

c =u  in this 
case) and is at its demographic equilibrium abundance for this trait value (i.e., 

/R c z d 50*
R
c= =u^ h  for the parameters considered). Then the consumer invades this 

community at low abundance, and both species respond demographically and 
evolutionarily to one another. The consumer can only invade and establish in the 
community if it can initially increase in abundance or adapt sufficiently to have a 
positive population growth rate before it goes extinct. In the scenario considered 
here, the consumer has a positive population growth rate when it invades, and both 
species evolve to a stable equilibrium for both abundances and traits (figs. 3.2 and 
3.3). (I will return to the second scenario when I discuss speciation in chapter 
4.) An animation of the changes in selection on the various fitness components 
and overall fitness for both species is provided at http:// press .princeton .edu /titles 
/11175 .html; figure 3.3 presents snapshots from this animation.

At the start, the resource experiences no selection pressure from the consumer 
because the consumer’s abundance is too low: the resource’s death fitness com-
ponent experiences no selection gradient imposed by the consumer, and so the 
shape of its overall fitness topography is completely defined by the shape of the 
fitness topography of its birth fitness component (fig. 3.3A). Thus, initially the 
resource does not evolve, because the consumer’s abundance is too low to inflict 
enough mortality to impose phenotypic selection on the resource. In contrast, the 
consumer immediately begins to evolve a higher trait value because of the selection 
gradient associated with its birth fitness component from eating resource individuals 
(fig. 3.3.B); this causes the attack coefficient to increase, because this decreases the 
difference in the trait values (i.e., z zN R∆= −r r r ) between the two species (i.e., to the 
left of the leftmost vertical dashed line in fig. 3.2C).

The resource only begins to evolve a higher trait value when the consumer’s 
abundance increases to a level that inflicts substantial mortality (i.e., it creates a 
significant selection gradient on the resource’s death fitness component, as shown 
in fig. 3.3B) and thus causes the resource’s abundance to begin to decline (i.e., at 
the leftmost vertical dashed line in fig. 3.2A). At this point, the resource evolves 
rapidly to diverge from the consumer, which causes the former’s intrinsic birth 
rate to decrease and the realized attack coefficient to also decrease rapidly (i.e., 
between the two vertical dashed lines in fig. 3.2C). The resource’s abundance 
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rebounds once its own evolution causes the realized attack coefficient to decrease 
sufficiently relative to its intrinsic birth rate.

Once this rapid phase of divergence is complete (i.e., the right vertical dashed 
line in fig. 3.2), the resource’s and consumer’s trait values continue to increase at 
a decelerating rate until they reach a stable equilibrium point in both abundances 
and trait values. Their evolution causes the resource’s realized intrinsic birth rate 
c zRr^ ^ hh to decline, because the resource evolves away from its intrinsic birth opti-

mum zR
cu^ h, and also causes the consumer’s realized intrinsic death rate f zNr^ ^ hh 

to increase, because the consumer evolves away from its intrinsic birth optimum 
zN

fu^ h (fig. 3.2C). The attack coefficient ,a z zR Nr r^ ^ hh also increases as a result of this 
coevolution because the difference between the consumer’s and resource’s trait 
values decreases (fig. 3.2C). The positions of the abundance isoclines change as 
the realized parameters of the system evolve (fig. 3.2C), and the system eventually 
has abundance isoclines as in figure 2.2F at this stable equilibrium.

At the equilibrium, the consumer is at a local fitness maximum, but in this case 
the resource is at a local fitness minimum (fig. 3.3C). Because both species are at 
their demographic equilibria, the values of the overall fitness curves at the average 
phenotypes are both zero (remember that in this modeling framework, average 
fitness is measured on a log scale; fig. 3.3C) because their birth and death fitness 
components are equal in magnitude but opposite in sign (i.e., the values of the 
fitness component curves at the average phenotype sum to zero for each species; 
fig. 3.3C). In addition, each species is at an overall fitness optimum because the 
selection gradients on their underlying fitness components balance. The resource 
experiences directional selection for decreasing its trait value due to selection on 
its birth fitness component, but this is balanced by directional selection of the 
same magnitude to increase its trait value via its death fitness component (fig. 
3.3C). Likewise, the consumer experiences directional selection for increasing 
its trait value due to selection on its birth fitness component, but this is balanced 
by directional selection of the same magnitude to decrease its trait value due to 
selection on its death fitness component (fig. 3.3C).

Figure 3.2. Abundance and trait dynamics of a consumer- resource coevolution. In this exam-
ple, the resource is initially adapted to an environment lacking the consumer, and the consumer 
is then introduced at low abundance. The panels show the dynamics of (A) population sizes, 
(B) trait values, and (C) realized values of the attack coefficient (a, dot- dash line), resource 
intrinsic birth rate (c, solid line) and consumer intrinsic death rate (f, dashed line). In panels A 
and B, the solid lines identify the resource values, and the dashed lines identify the consumer 
values. The parameters used for this example are c

0
 = 1.0, d = 0.02, a

0
 = 0.1, b = 0.1, h = 0.1, 

f
0
 = 0.1, g = 0.0, b = 5.0,  = 0.002,  = 0.01, zR

cu  = 10.0, zN
fu  = 4.0, and .V V 0 2z zR N

= = . (This 
figure is redrawn from figure 2 of McPeek 2017, with permission.)
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Figure 3.3. Fitness surfaces for the resource and consumer at various points in the scenario 
illustrated in figure 3.2. The final equilibrium for the example is given in figure 3.2. The groups 
of panels show the overall fitness surface, and the birth and death fitness component surfaces, for 
each species at iterations (A) 0, (B) 200, and (C) 3000. The vertical dashed lines in each panel 
identify the trait value of that species at that point. Note that the consumer is at a stable fitness 
maximum and the resource is at a stable fitness minimum at the equilibrium in iteration 3000. 
The parameters are given in figure 3.2. (This figure is redrawn from figure 2 of McPeek 2017, 
with permission.)
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The resource is maintained at this local fitness minimum because if its average 
trait value moves in either direction, changes in the consumer’s abundance will 
alter the selection gradient on the resource’s death fitness component to move 
it back to this trait optimum (see also Abrams et al. 1993, Abrams and Matsuda 
1997a). If the resource’s trait mean is perturbed to a lower value away from this 
equilibrium, the consumer’s abundance immediately increases because of the 
resulting increase in the attack coefficient, which increases the steepness of the 
selection gradient associated with the resource’s death fitness component from 
predation; this then alters the shape of the resource’s overall fitness surface to 
increase its trait value. In contrast, if the resource’s trait mean is perturbed to a 
higher value, the consumer’s abundance immediately decreases because of the 
resulting decrease in the attack coefficient, which reduces the steepness of the 
selection gradient on the resource’s death fitness component, and thus changes the 
shape of the resource’s overall fitness surface to decrease its trait value. Although 
the resource is experiencing disruptive selection at this minimum fitness opti-
mum, any evolutionary response by the resource away from this equilibrium will 
alter its overall fitness surface to bring the population back to the equilibrium 
due to the ecological response of consumer abundance. Likewise, opposing direc-
tional selection pressures impinging on the consumer’s various fitness compo-
nents maintain it at its fitness optimum (fig. 3.3C).

Remember that the selection gradient associated with a fitness component is 
the slope of the line tangent to the fitness surface at the average phenotype. Thus, 
the slopes of the tangent lines on the birth and death fitness components (i.e., the 
terms inside the parentheses in equation (3.10)) are equal in magnitude and oppo-
site in sign for each species at this evolutionary equilibrium. In this case, as proba-
bly in most cases in nature, a fitness optimum on the overall fitness surface results 
from a balancing of various underlying fitness components (Travis 1989). Also, 
note in equations (3.17) that the selection gradient of the resource’s death fitness 
component depends on the abundance and average trait value of the consumer, 
and the selection gradient of the consumer’s birth fitness component depends on 
the abundance and average trait value of the resource. The fitness components of 
each species change in response to abundance and trait changes in the other spe-
cies, and both the various fitness components and the various selection gradients 
must balance in each species at the demographic and evolutionary equilibrium.

Throughout the course of this coevolution, the fitness surfaces for the two 
species are not static—their shapes change because of changes in both abun-
dances and traits—and the traits of the two species closely follow the changing 
positions of the optimal phenotypes on the overall fitness surfaces (fig. 3.3; see 
also the animation of the fitness component surfaces in this figure at http://press 
.princeton.edu/titles/11175.html). Changes in the optimal phenotype for both 
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species are driven by how changes in their abundances and traits determine the 
mortality inflicted on the resource by the consumer (the resource’s death fitness 
component) and how this mortality translates into consumer births (the consum-
er’s birth fitness component). Also, the same phenotype zR

cu^ h gives the highest 
birth fitness component value to the resource throughout, but the fitness value at 
this fitness component optimum changes because of density dependence in birth 
rate, and the same is true for the death fitness component of the consumer.

Trait Cycling

Another interesting situation that illuminates the ecological drivers of trait evolu-
tion is when the entire system enters a stable limit cycle or chaotic cycle in which 
both abundances and traits change continuously over time (Hochberg and Holt 
1995, Abrams and Matsuda 1997b, Abrams 2000, Yoshida et al. 2003). Such a 
situation is illustrated in figure 3.4 when bidirectional- dependent traits define the 
attack coefficient. Trait cycling occurs in areas of parameter space with a number 
of specific features: the resource’s maximum intrinsic birth rate (c

0 
) and the max-

imum attack coefficient (a
0 
) are relatively high, the underlying strengths of selec-

tion gradients on the resource’s intrinsic birth rate () and consumer’s intrinsic 
death rate () are weak relative to the underlying selection strength on the attack 
coefficient (b), and the handling time of the consumer (h) is zero or relatively low. 
In other words, cycling occurs when the interaction is a greater determinant of the 
shape of the overall fitness surfaces of both species relative to other selection pres-
sures, and when the demographic response of the consumer is not substantially 
damped by satiation when the resources are abundant.

In contrast to trait cycling, the species’ abundances cycle in areas of parameter 
space where the abundance isoclines cross in ways that cause dynamic instability 
(see chapter 2). These areas of parameter space are generally characterized by the 
consumer having such a high handling time that the consumer isocline crosses 
the resource isocline to the left of its apex (Rosenzweig and MacArthur 1963, 
Rosenzweig 1969), or by particular community module configurations (Holt and 
Polis 1997, Křivan and Diehl 2005, Tanabe and Namba 2005). The species’ traits 
may evolve into areas where abundance limit cycles occur, but once there the 
traits do not evolve appreciably. Consequently, the cycles are driven exclusively 
by the dynamical properties of abundance regulation given the traits of the inter-
acting species and the resulting parameters.

Conversely, if traits cycle, abundances always cycle as well. The dynamics of 
this system is governed by a set of four isoclines in the four- dimensional joint 
abundance/trait space of equation (3.17). The shapes of the four isoclines near 
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NATURAL SELECTION DYNAMICS 101

where they cross to form a local equilibrium is what fosters the cycling. Because 
the trajectory of the cycle causes the system’s position to change on all four axes 
at once, the abundance isoclines (e.g., fig. 2.2) appear to change shape when con-
sidered in isolation, as do the trait isoclines. The trait isoclines have interesting 
shapes, but because we almost exclusively consider the dynamics of evolution 
in the context of the shapes of the fitness surfaces, I will not consider the trait 
isocline shapes here.

When trait cycling occurs with bidirectional- dependent traits defining the 
attack coefficient, the resource continually cycles through evolving away from the 
consumer and then evolving toward the consumer, while the consumer continu-
ally chases the resource in trait space (fig. 3.4B). This coevolutionary chase can 
be understood by the continual changes in the two species’ fitness surfaces (fig. 
3.4D–G). As a result, their abundances also cycle (fig. 3.4A) because the realized 
demographic parameters are continually changing (fig. 3.4C). (In this description, 
I will focus on the evolutionary aspects of the cycle. I will leave it for the reader 
to discern how this evolution drives the population dynamics seen in figure 3.4A.)

The most important evolutionary insights are made by considering selec-
tion associated with the various fitness components of the two species through 
one of these trait cycles. Figure 3.4D–G shows the fitness surfaces for the two 
species at four different points in the trait cycle. (An animation of figure 3.4 is 
also available at http:// press .princeton .edu /titles /11175 .html.) At iteration 2500 
(fig. 3.4D), the resource is near its maximum trait value in the cycle, and the 
consumer is evolving toward the resource (fig. 3.4B). Here, the resource is very 
near the local adaptive peak in overall fitness at the high trait value because the 
strengths of the selection gradients on its birth and death fitness components are 
strong and nearly balance. Note that the resource’s overall fitness surface at this 
point has a second adaptive peak that is substantially below its intrinsic birth 
optimum, and the bottom of the fitness valley between the two peaks is very 
near the consumer’s trait value. At this point, the consumer continues to evolve 
toward the resource because the positive selection gradient on its birth fitness 
component is much higher than the negative selection gradient on its death fit-
ness component.

As the consumer continues to evolve toward the resource (e.g., iteration 2650; 
fig. 3.4E), the height of the adaptive peak on which the resource resides declines 
to the point where this is no longer an adaptive peak at all. This is caused by the 
shift in the balance of selection gradients on the resource’s birth and death fitness 
components. Here, a very interesting evolutionary dynamic has happening: as the 
consumer evolves toward the resource, the magnitude of the attack coefficient 
increases as a result, and thus the ecological interaction strength between them 
(the strength of the selection gradient on the resource’s death fitness component 
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NATURAL SELECTION DYNAMICS 103

caused by predation from the consumer) actually decreases. Stronger selection 
now impinges on the resource’s birth fitness component, and the fitness peak on 
which it resided has now disappeared. Consequently, the resource reverses its 
evolutionary course and begins to evolve toward the consumer, even though this 
increases the realized attack coefficient and the consumer’s abundance still fur-
ther, and so increases its death rate due to predation (fig. 3.4C).

At iteration 2748, the resource’s and consumer’s trait values match (fig. 3.4F). 
Now the selection gradients resulting from the interaction between the species are 
zero; even though the attack coefficient is at its maximum value and the consumer 
is at its maximal abundance, and so is imposing maximal death rate due to preda-
tion on the resource (see equation (3.16) and fig. 3.4C), no selection impinges on 
either species because of the trophic interaction between them. Overall selection 
to decrease the resource’s mean trait value is due solely to the negative selection 
gradient to increase its intrinsic birth rate, and overall selection to decrease the 
consumer’s mean trait value is due solely to the negative selection gradient to 
decrease its intrinsic death rate.

As the resource’s mean trait value passes the consumer’s, natural selection due 
to predation reappears and strengthens again on both species to decrease both 
their trait values, whereas the selection gradients on their respective intrinsic birth 
and death rates decrease in magnitude. At iteration 2808, the resource reaches its 
intrinsic birth optimum zR

cu^ h, and so its intrinsic birth rate is maximized (see equa-
tion (3.12) and fig. 3.4C), but the selection gradient on its birth fitness component 
is zero (fig. 3.4G). By this time, the resource’s overall fitness surface again has two 
fitness peaks, but overall selection is now pushing the resource toward the lower 
peak. As the resource’s trait value passes zR

cu  and continues to decrease, the selec-
tion gradient on its birth fitness component increases to pull it back toward zR

cu , and 
the selection gradient on its death fitness component decreases but remains larger 
than the birth selection gradient, which pushes the resource to lower trait values. 
As a result, the height of the fitness peak to which it is evolving begins to decline; 

Figure 3.4. An example of trait cycling when bidirectional- dependent traits define the attack 
coefficient between the consumer and resource. The panels show the dynamics of (A) popula-
tion sizes, (B) trait values, and (C) realized values of the attack coefficient (a, dot- dash line), 
resource intrinsic birth rate (c, solid line) and consumer intrinsic death rate ( f, dashed line). In 
panels A and B, the solid lines identify the resource values, and the dashed lines identify the 
consumer values. Panels D–G show these overall fitness surfaces and the birth and death fitness 
component surfaces at specific iterations in the simulation. The parameters used for this exam-
ple are c

0
 = 3.0, d = 0.02, a

0
 = 0.2, b = 0.1, h = 0.0, f

0
 = 0.2, g = 0.0, b = 5.0,  = 0.01,  = 0.01, 

zR
cu  = 12.0, zN

fu  = 1.0, and .V V 0 2z zR N
= = . (This figure is redrawn from figure 2 of McPeek 2017, 

with permission.)
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it continues to decline as the consumer continues to evolve to chase the resource 
in phenotype space. The resource’s trait value reaches its lowest value when the 
birth and death selection gradients again balance. At this point, the lower fitness 
peak has decreased in height to such a degree that it is no longer a peak (analogous 
but reversed to the overall fitness surface in iteration 2650), and overall selection 
then causes the resource’s trait value to increase and again evolve toward that of 
the consumer. The other half of the trait cycle is then simply this entire series of 
relationships in reverse. Note that the resource evolves a more extreme phenotype 
than the consumer on both extremes of the cycle (fig. 3.4B).

With this cycling, the resource is undergoing continual shifts between two 
adaptive peaks, while the consumer is chasing a continuously moving single fit-
ness peak (fig. 3.4 and http:// press .princeton .edu /titles /11175 .html ). These peak 
shifts occur exclusively because of the dynamics of the overall fitness surfaces 
for the two species caused by the changing strengths of selection gradients asso-
ciated with their various fitness components. The resource is cycling between 
extreme phenotypes that give it relatively low birth and death rates, but it must 
pass through a period of high birth and death rates to traverse from one to the 
other. The magnitudes of selection gradients on its two fitness components follow 
a countervailing cycle, both being steep at the trait extremes of the cycle and rel-
atively shallow between.

When unidirectional- dependent traits define the attack coefficient, trait cycling 
occurs over a smaller total area of parameter space but under similar parameter 
relationships. Trait cycling in this case also takes a quite different form. For this 
situation, equation (3.15) is used for the attack coefficient in equations (3.9) and 
(3.10) to give
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Generally, when trait cycling occurs with unidirectional- dependent traits defin-
ing the interaction between the two species, the consumer evolves to have a 
higher trait value than the resource (fig. 3.5B). The resource is again undergoing 
shifts between two alternative adaptive peaks, and the consumer is chasing a 
single moving peak. (An animation of figure 3.5 is also available at http:// press 
.princeton .edu /titles /11175 .html.) For much of the cycle, the selection gradients on 
the resource’s death fitness component and the consumer’s birth fitness component 
are nearly zero because the consumer’s trait value is much higher than the resource’s 
trait value (fig. 3.5). This means that overall selection on the resource favors trait 
values very near its intrinsic birth optimum zR

cu^ h (fig. 3.5D).
As the predator evolves lower trait values, the steep transition zone of change 

in the attack coefficient (fig. 3.1D) and thus in the resource’s death fitness com-
ponent moves toward the resource’s trait value (fig. 3.5D–E). Once the consumer 
evolves to a low enough value to increase the selection gradient on the resource’s 
death fitness component, the overall fitness peak on which the resource resides 
temporarily disappears in favor of higher trait values in the resource, and thus 
it rapidly transitions to the alternative adaptive peak (fig. 3.5E). This evolution-
ary response that decreases the attack coefficient causes a spike in the resource’s 
abundance even though its intrinsic birth rate declines sharply (fig. 3.5A–C). The 
consumer then rapidly reverses its evolutionary course to evolve higher trait val-
ues due to the change in the selection gradient on its birth fitness component (fig. 
3.5E–F). In addition, this response to selection in the consumer causes its abun-
dance to decline because of the increase in its intrinsic death rate (fig. 3.5A–C). As 
the consumer evolves higher trait values, the selection gradient on the resource’s 
birth fitness component transitions back to the flat part of the fitness component 
surface, and overall selection then favors the resource to evolve back toward the 
reformed lower adaptive peak in overall fitness near its intrinsic birth optimum 
(fig. 3.5F–G).

Although the resource is again shifting between alternative adaptive peaks, the 
two peaks in this case represent very different demographics. One fitness peak 
is very near its intrinsic birth optimum; the resource has its highest birth rate 
but also a high death rate at this peak, and the selection gradients on both fitness 
components are relatively weak. The other fitness peak is far from its intrinsic 
birth optimum; here it has its lowest birth rate and lowest death rate, but the selec-
tion gradients on both fitness components are steepest. Thus, trait cycling with 
unidirectional- dependent traits defining the attack coefficient moves the resource 
between two extreme phenotypes that represent a trade- off of fitness components. 
In contrast, remember that cycling with bidirectional- dependent traits defining the 
attack coefficient moves the resource between alternative phenotypes that both 
have low birth and death rates.
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NATURAL SELECTION DYNAMICS 107

Trait cycling again typically occurs only in areas of parameter space where the 
underlying selection strengths on the resource’s intrinsic birth rate and the consum-
er’s intrinsic death rate are weak relative to the underlying selection strength on 
the attack coefficient (a). For example, in this case with unidirectional- dependent 
traits underlying the attack coefficient, trait cycling does not occur if the underly-
ing selection strength on the attack coefficient is weak (i.e., small a) relative to the 
underlying selection strengths on the intrinsic resource birth rates (i.e., large ) or 
the intrinsic consumer death rate (i.e., large ) (cf. fig 3.6A–C to 3.6D–F). Like-
wise, if  and  are increased relative to a, cycling is also stopped (Fig. 3.6G–I). 
Note that in this latter case, the trait values favored by selection are closer to the 
intrinsic birth and death optima for the respective species than in the case where the 
attack coefficient is the weaker factor (cf. figs. 3.6B and H). However, if a is then 
increased again relative to  and , trait cycling occurs again (fig. 3.6J–L).

If the traits of the two species have unidirectional- independent effects on the 
attack coefficient, as when defined by equation (3.14), trait cycling occurs only in 
a very narrow range of parameter space, and it occurs differently from dependent 
traits. Substituting equation (3.14) into equations (3.9) and (3.10) yields
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Figure 3.5. An example of trait cycling when unidirectional- dependent traits define the attack 
coefficient between the consumer and resource. The panels are as described in figure 3.4. The 
parameters used for this example are c

0
 = 3.0, d = 0.02, a

0
 = 0.5, b = 0.1, h = 0.0, f

0
 = 0.15, 

g = 0.0, a = 0.25,  = 0.001,  = 0.001, zR
cu  = 12.0, zN

fu  = 1.0, and .V V 0 2z zR N
= = . (This figure is 

redrawn from figure 5 of McPeek 2017, with permission.)
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108 CHAPTER 3

Figure 3.6. Examples illustrating that the relative selection strengths on the attack coefficient 
and the intrinsic resource birth and consumer death rates influence the prevalence of trait cycling. 
Each column of panels shows the results of a simulation with specific values for the parameters 
defining the underlying selection strengths on these three fitness components (specific values are 
given above each column). The top row of panels gives the dynamics of population sizes, and 
the middle row of panels gives the dynamics of the trait values. In these panels, the solid lines 
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NATURAL SELECTION DYNAMICS 109

identify the resource values, and the dashed lines identify the consumer values. The bottom row 
of panels gives the dynamics of the realized values of the attack coefficient (a, dot- dash line), 
resource intrinsic birth rate (c, solid line), and consumer intrinsic death rate (f, dashed line). 
All other parameters are as given in figure 3.5. (This figure is redrawn from figure 6 of McPeek 
2017, with permission.)
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110 CHAPTER 3

Figure 3.7. An example of trait cycling when unidirectional- independent traits define the attack 
coefficient between the consumer and resource. Panels A–C are as described in figure 3.4. Panels 
D–G show the abundance isoclines at specific iterations of the simulation. The parameters used 
for this example are c

0
 = 2.0, d = 0.04, a

0
 = 3.5, b = 0.1, h = 0.3, f

0
 = 0.1, g = 0.0, R  = 20.0, 

N  = 20.0,  = 0.001,  = 0.001, zR
cu  = 20.0, zN

fu  = 1.0, and .V V 0 2z zR N
= = .
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NATURAL SELECTION DYNAMICS 111

The first striking difference in trait cycling when independent traits are involved 
is that only the trait of the resource cycles (fig. 3.7B). (An animation of figure 3.7 
is also available at http://press .princeton .edu /titles /11175 .html.) Moreover, what 
drives the resource’s trait cycles is the cycling in the abundance of the consumer. 
However, the consumer’s abundance cycles are caused by changes in the positions 
of the abundance isoclines due to the evolution of the resource, and not from 
inherent instability caused by the shapes of the abundance isoclines.

When the resource is at its lowest trait value in the cycle, the attack coeffi-
cient is at a minimum. In the cycling system depicted in figure 3.7, the mini-
mum trait value of the resource in the cycle is zero, which in this case means the 
attack coefficient is zero. At this point in the cycle, with ,a z z 0R N =r r^ h  (fig. 3.7C), 
the resource’s abundance isocline is parallel to the N- axis, and the consumer’s 
abundance isocline is at +∞ on the R- axis. Thus, the consumer is at that instant 
being driven extinct. As a result, the resource increases to its equilibrium abun-
dance and evolves higher trait values to move toward its intrinsic birth optimum, 
because mortality from the consumer is very low. However, this increase in the 
resource’s trait value increases the attack coefficient, which moves the consum-
er’s isocline to lower values of the R- axis (fig. 3.7E). As the resource continues 
to evolve higher trait values, eventually the consumer’s isocline moves to lower 
values on the R- axis so that it crosses the resource isocline, and the consumer then 
increases in abundance (fig. 3.7F). When the resource reaches its maximum trait 
value in the cycle, the attack coefficient is at its maximum, and consequently the 
predator isocline is at its lowest value on the R- axis (fig. 3.7F). At this point, the 
consumer has increased sufficiently in abundance to alter the overall fitness sur-
face of the resource to favor lower trait values. The attack coefficient plummets as 
a result (fig. 3.7C), the consumer’s abundance isocline then moves toward +∞ on 
the R- axis, its abundance plummets, and the cycle begins again. All this merely 
causes a reversal in the direction of selection on the resource’s trait, and not shifts 
between alternative adaptive peaks.

COEVOLUTION IN A SIMPLE ECOLOGICAL SYSTEM

Trait cycles show strikingly how the balance among selection gradients on under-
lying fitness components determine the directionality of trait change in both 
species, the dynamic nature of fitness and natural selection, and the coupling of 
abundance dynamics and coevolution for the two species. However, in much of 
parameter space, stable equilibria for the entire system result. The same types 
of dynamics occur as the system proceeds to a stable equilibrium, and the same 
balances are struck at these equilibria.
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112 CHAPTER 3

The outcome of coevolution between these two species depends on the eco-
logical context in which their interaction takes place and on the underlying per-
formance relationships between the traits and the various fitness components. For 
example, these two species may interact in various locations across the landscape 
(i.e., in different communities) that differ in many ways. One location may have 
high nutrient concentrations and good water availability in the soil, whereas another 
location may have nutrient- poor soils and low water availability. A plant species 
in these different areas would have a high intrinsic birth rate (c

0
) in the community 

in the first location, but a low intrinsic birth rate in the second. The locations may 
also differ in conditions (e.g., temperature) that cause different levels of stress for 
the consumer or differ in the availability of other essential resources (e.g., water) 
that the consumer needs, and these differences may cause differences in the con-
sumer’s minimum intrinsic death rate ( f

0
) among locations. The maximum value of 

the attack coefficient (a
0
) may also differ among communities because of environ-

mental differences that cause prey to be more easily recognized or captured. For 
example, differences in turbidity would influence the ability of aquatic predators 
to see their prey, and different lakes may thus have different maximum possible 
values of attack coefficient. Locations may differ in structural complexity, and this 
also affects the ability of predators to capture prey. Alternatively, the maximum 
attack coefficient may take on different values because of other traits of the con-
sumers and resources not being modeled here (e.g., visual acuity of the consumer); 
these also influence the likelihood of a prey being captured. These basic parameters 
reflect the abiotic features of the environment in which this species interaction 
occurs and other properties of the species’ phenotypes not being modeled.

In this section, I explore how differences in these parameters, which will reflect 
differences in the ecological background of the community and other intrinsic 
properties of the species, affect the outcome of coevolution for these two species. 
I primarily present results for bidirectional- dependent traits underlying the attack 
coefficient, since parameter effects are generally the same across the various types 
of traits. However, I point out where discrepancies arise with other trait types. 
This is also not meant to be an exhaustive analysis of parameter space, but rather 
highlights the major trends.

First, consider the outcome of coevolution in communities that differ in pro-
ductivity to cause differences in the resource’s maximum intrinsic birth rate (c

0
); 

see figure 3.8A–B. In a community where the c
0
 is very low (e.g., < 2.8 for the 

parameters considered in figure 3.8A– B), the resource is not abundant enough to 
support a consumer population, regardless of whether the consumer can evolve or 
not. In other words, the consumer is incapable of evolving to satisfy its invasibil-
ity criterion (i.e., equation (2.3)). As a result, the resource evolves to its intrinsic 
birth optimum (i.e., .z 12 0R

c =u  in fig. 3.8A–B), and its abundance is R c z d*
R
c= u^ h . 
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114 CHAPTER 3

In communities in which the resource has a maximum intrinsic birth rate above 
this critical value (e.g., >2.8 for the parameters considered in fig. 3.8A–B), the 
consumer can evolve to satisfy its invasibility criterion and thus support a local 
population. In this parameter range, in communities with higher values of c

0
, the 

resource evolves to a trait value farther from its intrinsic birth optimum, and the 
consumer follows and then equilibrates at a trait value farther from its intrinsic 
death optimum (fig. 3.8A–B).

This latter result is caused by the ecological feedbacks between these two spe-
cies. Larger values of c

0
 caused the consumer to equilibrate at a higher abundance 

(chapter 2), which in turn causes a steeper selection gradient on the resource’s 
death fitness component. As a result, the resource strikes the balance between the 
selection gradients of its two fitness components farther from its intrinsic birth 
optimum zR

cu^ h. In addition, the higher resource productivity increases the consum-
er’s realized birth rate, which allows it to support a population at a higher realized 
death rate (fig. 3.8B); this in turn permits it to strike the balance between the selec-
tion gradients of its fitness components farther from its intrinsic death optimum 
zN

fu^ h. Thus, the productivity of the environment affecting the resource only indi-
rectly influences which trait value is favored for it by determining the consumer’s 
abundance. Yet again, we cannot understand the outcome of coevolution without 
understanding the drivers of species abundances.

A similar line of explanation holds when comparing communities that develop 
in locations with different environmental conditions that cause differences in the 
consumer’s minimum intrinsic death rate ( f

0
) (fig. 3.8C–D). If f

0
 is too high in 

a particular location, again the consumer is incapable of evolving to support a 
population (e.g., .f 0 390  for the parameters considered in fig. 3.8C–D). Below 
this point, the consumer will evolve farther from its intrinsic death optimum in 
communities in which it has a lower f

0
 value, which also forces the resource to 

evolve farther from its intrinsic birth optimum. A lower value of f
0
 results in a 

lower intrinsic death rate for the consumer at a given trait value (fig. 3.8D), which 
results in a larger consumer abundance (fig 3.8C); this in turn causes a steeper 
selection gradient on the resource’s death fitness component.

Likewise, the outcome of coevolution will differ between communities with 
environmental differences that would affect the maximum value of the attack 
coefficient (a

0
) (fig. 3.8E–F). Here again, if the maximum attack coefficient is too 

low, the consumer will not be able to support a population, even if it can evolve 
(e.g., .a 0 1350  for the parameters considered in fig. 3.8E–F). Because a higher 
value of a

0
 will directly create steeper selection gradients on both the resource’s 

death fitness component and the consumer’s birth fitness component, both species 
will evolve to trait values that are farther from their respective intrinsic optimal 
phenotypes in communities where a

0
 is larger (fig. 3.8E).
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NATURAL SELECTION DYNAMICS 115

These results suggest a general set of predictions that can be easily tested. 
For example, they predict that selection gradients on fitness components will be 
steeper in species up and down the food web in communities (1) with higher basal 
productivity (results for larger c

0
), (2) with more benign conditions for the con-

sumer (lower f
0
), and (3) where environmental conditions permit the consumer to 

catch resources at higher maximum rates (higher a
0
). Moreover, if one interprets 

the distance from the intrinsic birth optimum as a measure of the elaboration of an 
antipredator defense (e.g., swimming faster, producing more of a noxious chemi-
cal, lengthening spines, making exceedingly large or small seeds), prey should also 
evolve more elaborate defenses in communities with these same environmental 
conditions (i.e., higher basal productivity, more benign conditions for consumers, 
and higher maximal capture rates). Also, changes in species abundances across 
these environmental conditions match what one would expect purely based on 
ecological considerations—namely, abundances of both species should increase 
with productivity, the resource should increase with increasing death rate of the 
consumer, and the resource should decline and the abundance of the consumer 
should first increase and then decrease with an increasing attack coefficient (cf. 
fig. 3.8 with results in chapter 2). Therefore, species coevolution should reinforce 
ecological patterns of community structure along environmental gradients.

The steepness of the underlying selection gradient on the various fitness 
components (i.e., the shapes of the relationships in fig. 3.1 controlled by , , 
b, a, or R , and N ) may also differ among communities, or among different 
consumer- resource interaction pairs within a community. For example, in an envi-
ronment in which the distance to safety (e.g., thick bushes for cover) is very short, 
a resource species many only need to run slightly faster than its consumer to effec-
tively evade capture; but in an environment in which the distance to safety is far, 
the resource species may need to be substantially faster than the consumer to have 
the same chances of escaping capture. These environments would cause a differ-
ence in a for the unidirectional- dependent traits of escape and pursuit speed (fig. 
3.1D), and this difference will influence how the consumer and resource coevolve, 
because the positions of evolutionary equilibria are set by the balance of selection 
gradients on different fitness components.

Because the relative strengths of the selection gradients acting on different fit-
ness components determine the shape of the overall fitness surface against which 
the species evolve (Arnold and Wade 1984b, McPeek 1996b), differences in the 
underlying selection gradients will also shape the outcome of coevolution. For 
example, compare the result of coevolution in communities where the coefficient 
scaling the change in the attack coefficient with bidirectional- dependent traits 
(i.e., where a smaller b value makes the gradient steeper). If the realized attack 
coefficient changes very slowly with a change in the difference in species’ trait 
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NATURAL SELECTION DYNAMICS 117

values (i.e., large value of b), the consumer does not have to evolve far from its 
intrinsic death optimum to capture substantial quantities of resources (fig. 3.9E–
F). Making the intrinsic gradient on the attack coefficient steeper (i.e., smaller b) 
causes the consumer to be closer to the resource’s trait value, which moves it far-
ther from its intrinsic death optimum, and thus causes the consumer’s abundance 
to decrease and the resource’s abundance to increase. Interestingly, differences in 
b have little effect on the resource’s trait value; the realized selection gradient on 
the resource’s death fitness component changes little because the increase in the 
attack coefficient is offset by the decrease in the consumer’s abundance.

Altering the intrinsic gradients on the resource’s intrinsic birth rate (i.e.,  in 
equation (3.12)) or the consumer’s intrinsic death rate (i.e.,  in equation (3.13)) also 
change the outcome of coevolution (fig. 3.9A–D). A steeper intrinsic gradient on 
the resource’s intrinsic birth rate (increasing ) forces the resource to evolve a trait 
value closer to its intrinsic birth optimum (fig. 3.9A–B), and the analogous result 
is true for the consumer (fig. 3.9C–D). For example, higher values of  cause the 
consumer to evolve with have a trait value closer to zN

fu , which decreases the realized 
attack coefficient (fig. 3.9C–D). As a consequence of the decreased realized attack 
coefficient, the resource will evolve to have a trait value closer to zR

cu . If the consumer 
cannot support a population in the system at z zN N

f=r u  (as for the parameters consid-
ered in fig. 3.9C–D), high values of  (i.e., strong intrinsic selection gradient on the 
consumer’s death fitness component) will prevent the consumer from existing in the 
system, even with adaptation. These considerations illustrate the critical importance 
of quantifying the strengths of selection gradients on various fitness components to 
understand the overall form and outcome of natural selection.

Finally, the distance between the intrinsic trait optima, zR
cu  and zN

fu , of the con-
sumer and resource also strongly shapes the ecological system that will evolve, 
and the importance of the absolute distance between them depends on the under-
lying selection gradient of the attack coefficient. I show results for each trait type 
underlying the attack coefficients here because the effect of increasing zR

cu  relative 
to zN

fu  depends on the attack coefficient traits. The consequences of altering the 
distance between zN

fu  and zR
cu  illustrate the main difference between the three trait 

types. Since the consumer does not have to match the resource in phenotype in 
any particular way when independent traits underlie the attack coefficient, altering 
zR

cu  relative to zN
fu  has little effect on the abundances of the two species over much 

of this range; the prey is then the primary species to evolve, regardless of the 
selection strength (fig. 3.10A–D). In addition, if the resource’s optimum is near 
the value where the realized attack coefficient would be very low, the consumer 
may not be able to support a population (fig. 3.10A–D).

In contrast, increasing the distance between zR
cu  and zN

fu  for unidirectional and 
bidirectional- dependent traits can eventually drive the consumer extinct as it 
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NATURAL SELECTION DYNAMICS 121

coevolves away from its intrinsic death rate optimum to maintain an adequate 
capture rate of the resource (fig. 3.10E–P). Stronger selection on the attack coef-
ficient (i.e., larger values of a or lower values of b) also causes the consumer to 
evolve to extinction at lower values of zR

cu  relative to zN
fu  (fig. 3.10E–P).

ADD A TROPHIC LEVEL

Now consider how this simple consumer- resource system evolves when a pred-
ator that feeds on the consumer (i.e., a third trophic level), and potentially the 
resource as well (i.e., an intraguild predator), is added to the system. The predator 
feeds on the consumer, and possibly the resource, both with a saturating func-
tional response (i.e., intraguild predation/omnivory) and experiences its own 
density- dependent death rate. Adding this predator to the system elaborates the 
dynamical abundance and trait system to the following general form:
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  (3.20)

In the added functional responses, ,m z zN Pr r^ h is the attack coefficient, n is the con-
version efficiency, and l is the handling time for the predator feeding on the con-
sumer; ,v z zR Pr r^ h is the attack coefficient, w is the conversion efficiency, and u is the 
handling time for the predator feeding on the resource.

The predator also has an intrinsic death rate given by x zPr^ h and a density- 
dependent increase in death rate defined by y. The functions describing the 
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relationships between trait and parameter values follow the same form as those for 
the consumer. The functions defining the two attack coefficients of the predator 
for the different trait types are given in box 3.1. The intrinsic death rate is given by

 ( )zx x z z1p p P
x

0
2δ= + − u_ ^ h i, (3.21)

where zP
xu  is the trait value that minimizes the predator’s intrinsic death rate, x

0
 is 

the minimum intrinsic death rate at this optimum when z zp P
x= u , and  mediates the 

underlying selection gradient on z
P
 due to the death fitness component.

First, consider the evolution of this system in the absence of intraguild preda-
tion (i.e., ,( )v z z 0R P =r r ). The first general feature to emerge when a third trophic 
level is added to create a food chain is that the basal resource generally evolves 
trait values that are closer to its own intrinsic birth optimum as compared to when 
the predator is not feeding on the consumer (fig. 3.11). If the predator can invade, 
adapt, and ultimately support a population, it reduces the consumer’s abundance 
and alters the trait value favored in the consumer, which in turn changes the attack 
coefficient of the consumer feeding on the resource. Thus, the presence of the pred-
ator alters both the ecological (i.e., consumer’s abundance) and evolutionary (i.e., 
consumer’s trait value) conditions experienced by the resource. When the attack 
coefficient between the predators and their prey are determined by unidirectional- 
dependent (fig. 3.11E–H) or bidirectional- dependent traits (fig. 3.11I–L), the 
realized attack coefficient between the consumer and resource increases in the 
presence of the predator because of changes in both the consumer’s and resource’s 
phenotypes. Despite the increase in the attack coefficient on the resource, the 
reduction in the consumer’s abundance reduces the selection gradient sufficiently 
on the resource’s death fitness component to favor a trait value closer to zR

cu  in the 
presence of the predator.

If the attack coefficients are determined by unidirectional- independent traits 
(fig. 3.11A–D), the consumer evolves a lower trait value that lowers the attack 
coefficient on itself from the predator, which concomitantly reduces its own attack 
coefficient on the resource. Here, the resource evolves to have a phenotype closer 
to its intrinsic birth optimum, because of both an evolutionary reduction in the 
attack coefficient on it and an ecological reduction in the consumer’s abundance. 
Thus, the types of traits involved in the species interactions determine how the 
ecological structure and interaction strengths among species change as new spe-
cies are added to a community.

Comparing communities with different maximum attack coefficients of the 
predator on the consumer, m

0
 has little effect on the trait value that is favored in 

the predator (fig.3.11C, G, and K). However, communities with higher values of 
m

0
 have lower abundances of both the predator and the consumer, which causes 

the resource to evolve a trait value closer to its intrinsic birth optimum. Different 
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NATURAL SELECTION DYNAMICS 123

values of the underlying selection strength on ,m z zN Pr r^ h cause different trait values 
that evolve in the predator, giving a higher realized value of ,m z zN Pr r^ h with stron-
ger underlying selection (fig. 3.11D, H, and L).

Communities with higher productivity of the basal resource (i.e., larger val-
ues of c

0
) have higher abundances of all three species regardless of the trait 

Box 3.1. Functions for three different trait types  

defining the predator attack coefficients

When a top predator is added to a simple system containing a basal resource and an 

intermediate consumer, two additional functional responses must be defined. These 

are given in equations (3.20). Thus, an attack coefficient for the predator feeding 

on each must also be defined that incorporates the effects of the phenotypic traits 

of the interacting species to determining the realized value of each in the model. 

Thus, ,m z zN P^ h is the attack coefficient of the predator feeding on the consumer, and 

,v z zR P^ h is the attack coefficient of the predator feeding on the resource.

When unidirectional-independent traits define each, the functional forms are

 ,   &  ,m z z z z
m z z

v z z z z
v z z

N P
N N P P

N P
R P

R N P P

R P0 0

η η κ κ= + + = + +^ ^ ^ ^ ^ ^h h h h h h.

As with the analogous equation (i.e., equation [3.14]) for the consumer feeding 

on the resource, m
0
 and v

0
 are the asymptotic maxima for each, and x  and x  are 

scaling parameters that define the underlying selection strength for the respective 

species traits.

When unidirectional-dependent traits define these attack coefficients, the func-

tional forms are

 ,   &  ,m z z
e

m
v z z

e
v

1 1N P R P
0 0=

+
=

+ρ τΩ Σ− −^ ^h h ,

where z zP NΩ= −  and z zP RΣ= − , and  and  are scaling parameters that define 

the underlying selection strengths on the respective attack coefficients in this case.

When bidirectional-dependent traits define these attack coefficients, the func-

tional forms are

 ,   &  ,m z z m e v z z v eN P R P0 0

2 2

= =φ ψ
Ω Σ− −^ ^c ch hm m ,

where  and  are scaling parameters that define the underlying selection strengths 

on the respective attack coefficients in this case.
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NATURAL SELECTION DYNAMICS 125

Figure 3.11. Effects of different values of the 
maximum intrinsic birth rate of the resource 
(c

0
 ), the maximum attack coefficient of the 

consumer on the resource (a
0
 ), the maxi-

mum attack coefficient of the predator on the 
consumer (m

0
 ), and the various underlying 

selection strengths ,  ,  ( )Pη ρ φ  on the attack 
coefficient of the predator on the consumer; 
these are for the various trait types on the 
dynamics of coevolution in a three trophic 
level food chain with one species at each tro-
phic level. Each panel shows the trait values 
(filled circles) and population sizes (×) for the 
resource (solid lines), consumer (dashed lines), 
and predator (dot- dashed lines). Results from 
simulations in which the predator is absent are 
shown in gray, so that the effects of adding the 
top predator can be compared. The left column 
shows results for simulations where all attack 
coefficients are defined by unidirectional- 
independent traits, the middle column for 
unidirectional- dependent traits, and the right 
column for bidirectional- dependent traits. 
Parameter areas where trait cycling and pop-
ulation cycling occur are identified. Param-
eters other than the gradient parameter used 
in simulations are as follows: unidirectional- 
independent traits (panels A–D) c

0
 = 10.0, 

d = 0.2, a
0
 = 0.5, b = 0.1, h = 0.3, m

0
 = 0.05, 

n = 0.1, l = 0.3, f
0
 = 0.05, g = 0.0, x = 0.01, 

y = 0.0, R  = 20.0, N  = 20.0,  = 0.01, N  
= 20.0, P  = 20.0,  = 0.01,  = 0.01, zR

cu  = 
20.0, zN

fu  = 1.0, zP
xu  = 1.0, .V V V 0 2z z zR N P

= = = ; 
unidirectional- dependent traits (panels E–H) 
c

0
 = 10.0, d = 0.2, a

0
 = 0.5, b = 0.1, h = 0.2, 

m
0
 = 0.01, n = 0.1, l = 0.2, f

0
 = 0.2, g = 0.0, 

x = 0.01, y = 0.0, a = 0.1,  = 0.1,  = 0.01, 
 = 0.01,  = 0.01, zR

cu  = 12.0, zN
fu  = 1.0, zP

xu  
= 1.0, .V V V 0 2z z zR N P

= = = ; and bidirectional- 
dependent traits (panels I–L) c

0
 = 10.0, d = 

0.2, a
0
 = 1.0, b = 0.1, h = 0.1, m

0
 = 0.05, 

n = 0.1, l = 0.1, f
0
 = 0.2, g = 0.0, x = 0.01, 

y = 0.0, b = 5.0,  = 5.0,  = 0.01,  = 
0.01,  = 0.02, zR

cu  = 12.0, zN
fu  =1.0, zP

xu  = 1.0, 
.V V V 0 2z z zR N P

= = = .
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types underlying the attack coefficients (fig. 3.11A, E, and I). The evolutionary 
responses of the three species when c

0
 is greater are more heterogeneous. Higher 

values of c
0
 cause the resource to evolve closer to its intrinsic birth optimum for 

all trait types underlying the attack coefficients, but the evolutionary responses 
in the consumer and predator depend on the trait types. The phenotype of the 
predator responds to different levels of productivity of the resource substantially 
only when unidirectional- dependent traits determined the attack coefficients (fig. 
3.11E), whereas with higher values of c

0
, the consumer evolves closer to its intrin-

sic death optimum with unidirectional- independent traits (fig. 3.11A) and away 
from its intrinsic death optimum with unidirectional- dependent traits (fig. 3.11E).

The evolutionary responses of species at the three trophic levels when the 
top predator is also an intraguild predator differs depending on the trait types 
defining the attack coefficients (fig. 3.12). With both independent-  and dependent- 
unidirectional traits defining the attack coefficients, a higher maximum value of 
the attack coefficient for the predator feeding on the resource (v

0
) causes smooth 

transitions in trait values for all species across communities. In communities with 
higher values of v

0
, the resource evolves to a trait value closer to its intrinsic birth 

rate optimum, the consumer evolves farther from its intrinsic death rate optimum, 
and the predator evolves closer to its intrinsic birth optimum (fig. 3.12A–B). With 
high values of v

0
 at which the consumer cannot persist, the system returns to two 

trophic levels.
In contrast, when bidirectional- dependent traits define the attack coefficients, 

higher values of v
0
 result in more graded transitions (fig. 3.12C). Over a range of 

low values of v
0
 (0.0001–0.0015 in fig. 3.12C), changing its value has little effect 

on the traits that evolve in the three species or their abundances, with the predator 
having a trait value between the resource and consumer. Above this range, the 
predator evolves to feed more heavily on the resource by shifting its trait value 
below that of the resource and thus closer to its intrinsic death rate optimum. Here 
again, the outcome of coevolution by natural selection critically depends on the 
structure of the community and on the trait types defining the species interactions.

IMPLICATIONS FOR MEASURING SELECTION IN THE WILD

This theoretical exploration of the ecological dynamics of natural selection pro-
vides important guidance into what measures of natural and sexual selection in 
wild populations quantify. First, few if any studies of natural selection in a wild 
population actually measure overall fitness. The studies that come the closest are 
those that follow marked populations of large mammals over multiple generations 
(e.g., Ozgul et al. 2009). However, most studies take a snapshot of selection within 
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NATURAL SELECTION DYNAMICS 127

Figure 3.12. Effects of different 
values of the predator’s maxi-
mum attack coefficient on the 
resource (v

0
 ) (i.e., the strength 

of intraguild predation) for the 
various trait types on the dynam-
ics of coevolution in a three- 
trophic- level food chain with one 
species at each trophic level. (A, 
unidirectional- independent traits; 
B, unidirectional- dependent traits; 
and C, bidirectional- dependent 
traits.) Symbols are as specified 
in figure 3.11. Parameters other 
than the gradient parameter used 
in simulations are as follows: 
(A) unidirectional- independent 
traits c

0
 = 10.0, d = 0.2, a

0
 = 0.5, 

b = 0.1, h = 0.1, m
0
 = 0.1, n = 

0.1, l = 0.1, w = 0.1, u = 0.1, f
0
 = 

0.05, g = 0.0, x = 0.01, y = 0.0, R  
= 20.0, N  = 20.0, N  = 20.0, P  
= 20.0, R  = 20.0,  = 0.01,  = 
0.01,  = 0.01, zR

cu  = 20.0, zN
fu  = 

1.0, zP
xu  = 1.0, .V V V 0 2z z zR N P

= = = ; 
(B) unidirectional- dependent traits 
c

0
 = 10.0, d = 0.2, a

0
 = 0.5, b = 

0.2, h = 0.1, m
0
 = 0.1, n = 0.1, l = 

0.1, w = 0.1, u = 0.1, f
0
 = 0.2, g = 

0.0, x = 0.01, y = 0.0, a = 0.2,  = 
0.2,  = 0.2,  = 0.01,  = 0.01, 
 = 0.01, zR

cu  = 12.0, zN
fu  = 1.0, 

zP
xu  = 1.0, .V V V 0 2z z zR N P

= = = ; and 
(C) bidirectional- dependent traits 
c

0
 = 1.0, d = 0. 02, a

0
 = 0.75, 

b = 0.1, h = 0.05, m
0
 = 0.1, n = 

0.1, l = 0.05, w = 0.1, u = 0.05, 
f
0
 = 0.005, g = 0.0, x = 0.005, 

y = 0.0, b = 5.0,  = 5.0,  = 
5.0,  = 0.02,  = 0.02,  = 0.02, 
zR

cu  = 12.0, zN
fu  = 1.0, zP

xu  = 1.0, 
.V V V 0 2z z zR N P

= = = .
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one generation, and typically only on a subset of the entire life cycle of the organ-
ism being studied. Most also consider only one fitness component. For example, 
in their comprehensive analysis of selection measures in the wild, Kingsolver 
et al. (2001) divided the studies they found into three categories based on what 
measure of fitness was being considered: survival, mating success, or fecundity. 
Not surprisingly, they found that linear (i.e., directional) selection was common, 
but quadratic selection was not (see also Hendry and Kinnison 1999, Hoekstra 
et al. 2001, Rieseberg et al. 2002, Kingsolver and Diamond 2011, Kingsolver et 
al. 2012). Quadratic selection is a measure of the curvature of the fitness surface 
experienced by the population and is a necessary but not sufficient condition for 
the identification of stabilizing or disruptive selection.

The theoretical investigations presented here suggest that measures of selec-
tion on fitness components should most frequently identify directional selection 
as important, since the evolution of a species typically reaches an equilibrium at 
which the selection gradients of different fitness components balance (e.g., fig. 
3.3C). Thus, directional selection being found more frequently is not surprising, 
especially since stabilizing and disruptive selection should also be harder to iden-
tify (Haller and Hendry 2014), and most studies of phenotypic selection in the 
wild measure fitness components and not lifetime overall fitness. Moreover, even 
if multiple fitness components are influenced by bidirectional traits, the balance 
required will typically mean that few if any fitness components will be at their 
optimal trait values.

However, these analyses also found little evidence for trade- offs among selec-
tion pressures, which should be the signature of such balancing selection gradients 
(i.e., the selection gradients summing to zero in equation (3.7)); see Kingsolver et 
al. 2001, Kingsolver and Diamond 2011, Kingsolver et al. 2012). For example, in 
one compilation of studies, the magnitude and direction of selection was found to 
balance in only 2% of the cases in which multiple fitness components were mea-
sured in association with one trait (Kingsolver and Diamond 2011). These authors 
offer a number of plausible reasons for why evidence of such expected fitness 
trade- offs is sparse among the data, including that the various fitness components 
or traits involved in the trade- off were not all included in the analyses, spatial 
environmental variation influences multiple fitness components simultaneously 
(e.g., Rausher 1992, Stinchecombe et al. 2002), selection varied temporally in 
direction, and indirect selection occurred on correlated traits.

The most likely culprit for the lack of evidence for fitness trade- offs is that 
optimizing selection rarely results from the simple balance of only two opposing 
selection gradients operating on one trait in real organisms. The models consid-
ered in this chapter only included two overall fitness components (birth and death 
rates) acting on one trait. However, even for this simple scenario, many more 
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than two selection gradients may act on a single trait—particularly when a demo-
graphic rate is influenced by multiple selection gradients, as when the species 
interacts with more than one species. We will see much more of this in chapter 5, 
but even in the models considered in this chapter, the resource evolves to balance 
three fitness components when a consumer and an intraguild predator are pres-
ent (equation (3.20)). One would conclude that the resource’s fitness components 
balance only when all three are measured simultaneously. To properly see the 
balancing in this case, the resource’s survival would have to also be separated into 
the components due to predation by the intraguild prey and intraguild predator. If 
interactions with many more species are also considered, as well as multiple traits 
influencing various fitness components, and the fact that one must measure fitness 
components over the entire life cycle of an organism, then the task for actually 
identifying where the trade- offs lie becomes daunting, if not impossible.

Given the ubiquity of directional selection that is apparent in these summary 
analyses, one must ask also why rapid changes in the phenotypes of species are 
not occurring (Merilä et al. 2001). This is a particularly troubling question given 
the consistency in the direction of selection over multiple generations measured 
in many species (Siepielski et al. 2009, Kingsolver and Diamond 2011, Siepielski 
et al. 2011a, Siepielski et al. 2013). Many plausible explanations exist for how 
consistent selection gradients that a population experiences generation after gen-
eration may still result in little if any phenotypic change over time, particularly 
since heritabilities of many traits under selection seems to be adequate to permit 
responses (Mousseau and Roff 1987). These include strong antagonistic genetic 
correlations that prevent response to selection, unmeasured countervailing selec-
tion pressures, and greater environmental phenotypic variation in natural popula-
tions (see Merilä et al. 2001 for an excellent discussion of these).

The theoretical analyses presented here suggest an additional explanation that 
is actually embodied in all of these, but one that will be difficult to document for 
the reasons given in the previous paragraph. This explanation is that many species 
are at evolutionary equilibria. The direction of selection is consistent across years 
and generations in many species, whereas the magnitudes of the selection gradi-
ents do fluctuate (Siepielski et al. 2009, Kingsolver and Diamond 2011, Siepielski 
et al. 2011a). These conditions would be expected for species at or near the point 
where the selection gradients they experience are relatively balanced, but short- 
term fluctuations in the abundances of interacting species cause the magnitudes to 
vary. This short- term variability is probably caused by short- term fluctuations in 
abiotic conditions that affect the magnitudes of species’ intrinsic birth and death 
rates. Large and changing types of selection should be expected most when spe-
cies are first adapting to a new selection regime (e.g., figs. 3.2 and 3.3), as when 
they are introduced into a new environment (Hendry and Kinnison 1999).
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THE BALANCE THAT IS STRUCK

The outcome of coevolutionary interactions among species is determined by the 
balances that are struck among both the fitness components and selection gra-
dients experienced by each species. Also, the outcomes of these coevolution-
ary interactions influence both what evolves in each species and the abundance 
dynamics that results in the community.

If the community reaches a stable equilibrium point in both abundances and 
traits, the balancing fitness components in each species are what generates stabil-
ity of the abundances. At equilibrium, the overall realized birth and death rates 
sum to zero for each species, with these abundances being defined by the posi-
tion where their abundance isoclines intersect (chapter 2). I hope it was clear 
that everything considered in chapter 2 applies when we consider the communi-
ty’s evolutionary aspects. The only difference with evolutionary dynamics is that 
the abundance isoclines for the species change shape and position as their traits 
change in evolutionary response to one another.

The evolutionary balance requires that the selection gradients for each spe-
cies also sum to zero. The selection gradients are defined by the underlying 
relationships of fitness components with the traits experiencing selection; and 
the relative magnitudes of these selection gradients for the various fitness com-
ponents will define the outcome of that selective process. In other words, if the 
selection gradient associated with one fitness component is disproportionately 
strong relative to all others, the overall fitness surface’s shape will be defined 
primarily by this selection gradient, and the species will consequently evolve 
mostly in response to this selection gradient (McPeek 1996a). For example, 
when the underlying selection strength on the resource’s intrinsic birth rate is 
high (i.e., large ) relative to the other fitness components, the resource evolves 
a trait value very close to its intrinsic birth optimum (fig. 3.9A). However, when 
the underlying selection gradient on the attack coefficient is relatively high (i.e., 
small b), the resource evolves farther from its intrinsic birth optimum if that will 
decrease predation, and the consumer will evolve farther from its intrinsic death 
optimum (fig. 3.9E).

The best theoretical illustrations of the importance of this balance are when 
trait cycling occurs. Trait cycling takes place when the balance among selection 
gradients continually shift back and forth. In the models studied here, prey will 
periodically evolve to become more vulnerable to their predators when the selec-
tion gradients on other fitness components are stronger. This cycling only occurs 
in areas of parameter space where the underlying selection strengths are relatively 
equal (fig. 3.6).
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NATURAL SELECTION DYNAMICS 131

The magnitudes of the fitness components also influence the balance struck 
among the various selection gradients impinging on each species. For example, 
increasing its maximum intrinsic birth rate permits the resource to evolve farther 
from its intrinsic birth optimum; similarly decreasing the consumer’s minimum 
intrinsic death rate permits it to evolve farther from its intrinsic death optimum. 
Moreover, because many of the fitness components are influenced by the abun-
dances of themselves or other species, alterations of these parameters in one spe-
cies can shift these balances merely by changing features of the system that alter 
species abundances (e.g., the strength of density dependence). In other words, one 
cannot determine what trait value will be favored in one species without knowing 
the abundances of all species with which it interacts in the community.

All these considerations imply that a much richer ecological and evolutionary 
set of information is needed if we are to actually understand various patterns of 
natural selection in the wild. Moreover, this richer set of considerations makes the 
study of natural selection a predictive endeavor. Given the last few paragraphs, 
one would predict that a resource species in a productive environment would 
adapt primarily by elaborating defenses to thwart its enemies (e.g., predators, dis-
eases), whereas the same resource species in an unproductive environment would 
adapt primarily by adapting to maximize its birth rate at the expense of defenses 
against enemies (fig. 3.8). However, in the productive environment one would 
measure a strong selection gradient for its birth rate (because the species is far 
from zR

cu ), whereas in the unproductive environment the selection gradient on its 
birth rate would be weak (because the species is near zR

cu ). This simple example 
also suggests that many of these predictions may be quite counterintuitive if one 
were only considering evolutionary features in isolation.

In addition, a critical feature for determining what is favored by natural selec-
tion is the differences in strengths of selection gradients experienced by differ-
ent fitness components (McPeek 1996a). Comparable sets of predictions can be 
made for the same species in different environmental settings or when comparing 
different sets of trophic interactors based on the relationships for other model 
parameters considered in figures 3.8–3.12. A full explanation for patterns of nat-
ural selection will require not only quantifying the shapes of fitness surfaces, but 
also the magnitudes of the associated fitness components and selection gradients 
on those fitness components, and the abundances and phenotypes of the species 
that influence those fitness components.

These analyses also highlight that adaptive evolution does not act to perpetuate 
a species. Species may be incapable of evolving the phenotypes that would be 
necessary to prevent their extinction. Moreover, adaptive evolution can in some 
cases favor species to actively move to trait values that will ensure their extinction 
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(Webb 2003, Parvinen 2005). Adaptive evolution does not act “for the good of the 
species” overall, and cannot act to make species better at all things. The richness 
of the study of evolution is embedded in understanding the conflicting ecological 
and evolutionary demands that any species faces in adapting to the community in 
which it lives.

UNIFYING FRAMEWORK

The theory pioneered by Lande (1982), Iwasa et al. (1991), and Abrams et al. 
(1993) for understanding the joint dynamics of species’ abundances and traits 
in a community context (e.g., equations (3.9) and (3.10)) provides a unifying 
framework for understanding the joint ecological and evolutionary dynamics of a 
community. The underlying currency is the fitnesses of individuals and how these 
depend on the abiotic environment in which those individuals find themselves, 
and the abundances and traits of all the species in the community. The average of 
these individual fitnesses for each population is the explicit currency that defines 
the ecological and evolutionary trajectories of all the populations.

In a population dynamics context, we speak of average fitness as the overall 
per capita demographic rate of the population: dN Ndt . The average fitness of 
the population determines whether the abundance will increase, decrease, or not 
change in the next instant of time.

In an evolutionary context, we speak of average fitness as the fundamental 
metric of natural selection: ( )ln WN

r . How this will change with a change in the 
distribution of phenotypes of the population determines whether natural selection 
can potentially shift that phenotypic distribution (Lande 1982).

Because the symbology of population dynamics and natural selection are dif-
ferent, we typically do not realize that the fundamental basis of both is the same 
thing; that is, dN Ndt  and ( )ln WN

r  are the same quantity (equation (3.4)), and 
changes in the abundance of a population and its average trait value are governed 
by the same basic metric (Charlesworth 1994; Lande 2007, 2008)!

We can see the relationship better by specifying the overall average fitness 
landscape for a species embedded in a community. The average fitness of a popu-
lation (i.e., ( )lndN Ndt WN= r ) maps onto a system of axes describing the abiotic 
factors (one subset of axes) for that site, and the abundances (a second subset) 
and mean traits (a third subset) of this species and all the other species in the 
community. In this work, I have not explicitly modeled abiotic factors, but rather 
subsumed their effects into the parameters of the models. In many cases, one 
would want to also model the dynamics of abiotic factors explicitly, particularly 
when they have dynamics themselves (e.g., species utilizing resources that can be 
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NATURAL SELECTION DYNAMICS 133

depleted, such as water, nitrogen, phosphorus, silica, light). Regardless of whether 
they can be altered by the actions of the biotic community, the average fitness of 
a population may change along an abiotic factor axis. As this chapter makes clear 
for each species in the community, the traits and abundances of all species are also 
important axes in this system.

To make this discussion concrete and to illustrate visually how ecology and 
evolution fit together, first consider an extremely simple community composed of 
a single resource species by itself at a site. Assuming the same relationships for 
this resource as for all other resources discussed in this chapter, its average fitness 
is given by

 ( )ln WRdt
dR c z z dR1R R R

c
0

2γ= = − − −r u^ ^ h h , (3.22)

with a single bidirectional- independent trait that influences the value of its max-
imum birth rate, and a linear density- dependent decrease in fitness with increas-
ing abundance (i.e., logistic population growth). Because I am limited to three 
dimensions, figure 3.13. does not illustrate the abiotic axes that also influence this 
species’ average fitness; because they are not considered explicitly, the fitness sur-
face would change shape as the values of the abiotic factors change. In addition, 
I am limited to considering only one trait; a full representation would require as 
many trait axes for this species as it has ecologically important traits. More than 
one abundance axis would also be needed if this species possessed a complex life 
cycle with multiple stages. In this illustration, the intrinsic birth optimum is at 
z 10R

c =u . At any point in time, the population of this species is a point in the mean 
trait- abundance plane, and height of the topography above this point is the aver-
age fitness of the individuals in the population. The ecological and evolutionary 
dynamics of the population move this point as we have described until it eventu-
ally reaches the stable equilibrium point of , ,[ ] [ ]R z 50 10* *

R = .
I show two slicing planes through this three- dimensional fitness topography 

to illustrate the ecological and evolutionary features driving the dynamics of the 
population. The first slicing plane runs parallel to the mean trait axis and crosses 
the abundance axis at R = 50; the upper left panel shows the intersection of the 
fitness surface with this slicing plane (fig. 3.13). This is the relationship between 
fitness and the mean trait at this abundance, and thus describes phenotypic selec-
tion gradients acting on the population for different mean trait values when the 
abundance of the population is 50. The dynamics of the fitness topography that we 
explored in this chapter and that we will continue to explore in chapter 5 are sim-
ply determined by sliding this slicing plane along the abundance axis as the spe-
cies’ numbers change. Obviously, in more complex communities, the position of 
the corresponding slicing plane would be moving simultaneously along multiple 
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134 CHAPTER 3

trait and abundance axes for all the species, including the species of interest and 
the abiotic factor axes.

The other slicing plane runs parallel to the abundance axis and crosses the 
mean trait axis at 10 (fig. 3.13). The intersection of the fitness surface with this 
slicing plane demarcates where the population abundance would equilibrate given 
the mean trait value in the population. The equilibrium population abundance, 
given the current mean trait value, is given by the abundance having ln W 0Xi

=r_ i  
in the upper right panel; this is a stable equilibrium in this case. If the population 
abundance is below this value, the abundance will increase, and if above it, popu-
lation abundance will decrease. It is easy to see why the population would equil-
ibrate at different abundances if the mean trait value in the population changes.

Without boggling the mind too much, now extrapolate this simple picture to 
the analogous relationship for a multispecies community. The axis system for a 
community with more interacting species would simply have more mean trait 
axes and more abundance axes (and don’t forget about the abiotic factor axes 
as well), but we can conceptualize the dynamics of the system in exactly the 
same way. In fact, I have been doing this throughout this chapter. The per capita 
population growth forms of equations (3.17)–(3.20) all represent more elaborate 
multidimensional forms of the figure depicted in figure 3.13C, each with more 
abundance and trait axes. Each species in the community will have a different 
fitness topography associated with this same multidimensional axis system of abi-
otic factors and species’ traits and abundances, and each species will respond to 
its own fitness surface associated with this same axis system. A joint abundance 
and trait equilibrium for the community occurs at each point in these multidimen-
sional spaces where for every species ( )ln W 0=r , and the fitness topography of 
each and every species at this point has ( )ln W z 0

z z
2 2 =

= r
 for all of its own trait 

axes. The locations of these equilibrium points will define domains of attraction, 
and within each domain of attraction the species’ abundances and traits would 
either approach the equilibrium (i.e., stable equilibrium) or enter into a limit cycle 
or chaos of only abundances or of both traits and abundances.

These are the two orientations on which we focus without realizing that they 
are two perspectives of the same feature. Ecologists take the population regu-
lation perspective (i.e., dR Rdt  vs. abundance in fig. 3.13B) and tend to ignore 
that species’ traits are also critical to population dynamics. Likewise, evolution-
ary biologists take the natural selection perspective (i.e., ( )ln WR

r  vs. mean trait 
in fig. 3.13A) and tend to ignore that the fitnesses of individuals depend on the 
abundances of all the species in the community. The changing shapes of isoclines 
and of fitness topographies that we have explored here and will explore further 
in chapter 5 are simply the result of moving these slicing planes along the axes 
not considered in each perspective. The shapes of isoclines change as the traits of 
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NATURAL SELECTION DYNAMICS 135

Figure 3.13. The fitness surface for a resource species that is the only member of a community, 
whose average individual fitness is determined by equation (3.22). For this species, the param-
eters of the model are c

0
 = 4.0, d = 0.08,   = 0.1, and zc

Xi

u  = 10.0. The lower panel shows the 
fitness surface as a function both the mean trait value in the population and the species’ abun-
dance. The upper left panel shows the intersection of the fitness surface with the slicing plane at 
R = 50, which is the fitness topography that determines phenotypic selection on this trait at this 
abundance. The upper right panel shows the intersection of the fitness surface with the slicing 
plane at z

R
 = 10.0, which is the fitness relationship that governs population dynamics at this trait 

value. (This figure is redrawn from figure 1 of McPeek 2017, with permission.)
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136 CHAPTER 3

the interacting species change (e.g., fig. 3.7), and the shapes of fitness landscapes 
change as the abundances of all interacting species and the traits of other spe-
cies change (e.g., fig. 3.3). This conceptual framework plainly reveals that both 
perspectives are simultaneously essential to understanding either the population 
dynamics of interacting species or the natural selection of any one species in the 
community.
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