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The diets of Australopithecus africanus and Paranthropus robustus are hypothesized to have included C,
plants, such as tropical grasses and sedges, or the tissues of animals which themselves consumed C, plants.
Yet inferences based on the craniodental morphology of A. africanus and P robustus indicate a seasonal diet
governed by hard, brittle foods. Such mechanical characteristics are incompatible with a diet of grasses or
uncooked meat, which are too tough for efficient mastication by flat, low-cusped molars. This discrepancy,
termed the C4 conundrum, has led to the speculation that C, plant underground storage organs (USOs)
were a source of nutrition for hominin species. We test this hypothesis by examining the isotopic ecology of
African mole rats, which consume USOs extensively. We measured 680 and 6'2C of enamel and bone
apatite from fossil and modern species distributed across a range of habitats. We show that 6'30 values vary
little and that 6'>C values vary along the C; to C,/CAM-vegetative axis. Relatively high 6'>C values exist in
modern Cryptomys hottentotus natalensis and Cryptomys spp. recovered from hominin-bearing deposits.
These values overlap those reported for A. africanus and P robustus and we conclude that the USO
hypothesis for hominin diets retains certain plausibility.

Keywords: hominin evolution; stable isotopes; plant underground storage organs; geophytes;
Bathyergidae; Crypromys

1. INTRODUCTION

The evolution of human diet is informed by multiple lines
of evidence, including craniodental morphology, dental
microwear, comparative primate ecology and stable isotope
analysis (Teaford & Ungar 2000; Teaford ez al. 2002). The
carbon isotope composition (6'>C) of hominin tooth
enamel indicates a diet heavily influenced by plants that
use C4 photosynthesis or Crassulacean acid metabolism
(CAM). As a result, the diet of Australopithecus africanus
and Paranthropus robustus is hypothesized to have included
C, plants, such as tropical grasses and sedges, or the
tissues of animals which themselves consumed C, plants
(Sponheimer er al. 2005a). Yet inferences based on the
microwear and craniodental morphology of early hominins
indicate a seasonal diet governed by modestly tough foods
(e.g. A. africanus; Scott et al. 2005), hard, tough foods (e.g.
A. anamensis; Macho et al. 2005; cf. Grine et al. 2006a),
hard, brittle foods (e.g. A. afarensis; Ryan & Johanson 1989;
Ungar 2004; cf. Grine et al. 20065) or hard, abrasive foods
(e.g. P bosei and P, robustus; Demes & Creel 1988; Scott ez al.
2005). Such mechanical characteristics are incompatible
with a diet of C,4 grass blades or uncooked meat; both foods
are too fracture resistant for efficient mastication by flat,
thickly enamelled, low-cusped molars (Lucas & Peters
2000; Teaford & Ungar 2000). In an effort to reconcile this
discrepancy, termed the C, conundrum, authors have
suggested that the contribution of C, tissues to hominin
diets could be, in part and to different extents, derived from
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termites, sedges and/or plant underground storage organs
(USOs; Sponheimer & Lee-Thorp 2003; Sponheimer ez al.
2005a,b).

Plant USOs are starchy geophytic structures, such as
corms, bulbs, rhizomes and tubers. They are relatively
common in xeric habitats (Pate & Dixon 1982; Vincent
1985; Proches et al. 2006), and their importance in human
evolution has received considerable theoretical attention
(Robinson 1954; Coursey 1973; Hatley & Kappelman
1980; Laden & Wrangham 2005). For instance, it is
hypothesized that the changes in tuber consumption
facilitated the initial emergence and spread of Homo
erectus out of Africa (Hawkes ez al. 1998; O’Connel er al.
1999; Wrangham ez al. 1999). Such arguments are
challenging to test because direct evidence for USO
consumption is difficult to obtain, particularly for more
remote time periods. USOs themselves are perishable, as
are many of the tools used to collect and process them.

Today, a diet of USOs is characteristic of human hunter
gatherers in arid environments, particularly as a fallback
food (Vincent 1985; Campbell 1986). Many of the USOs
edible to humans are also consumed by African mole rats
(Bathyergidae; Laden & Wrangham 2005), a radiation of
rodents that have specialized in this food base for 40 Myr
(Faulkes er al. 2004). Importantly, a survey of faunal
assemblages at hominin-bearing localities reveals a statistical
co-occurrence with mole rats (Laden & Wrangham 2005).
This result suggests co-occupation of environments suitable
for USO-bearing plants and raises the possibility that
hominins and mole rats competed for similar food items.
An analysis of stable carbon and oxygen isotopes is well
suited to test this hypothesis.
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Figure 1. Southern African localities where bathyergid skulls were collected; Bathyergus suillus (33°58'26.4" S; 18°37'0.6" E;

n=11), Cryptomys damarensis (27°27'42.2" S; 23°25'50.7" E;

n=10), Cryptomys hottentotus natalensis (29°32'02.6" S;

29°36/29.4" B; n="7), Cryptomys hottentotus pretoriae (25°45'2.1"S; 28°11'9.1" E; n=7) and Georychus capensis
(33°22/41.0" S; 18°22’41.8" E; n="17). Specimens of Cryptomys spp. (n=23) were recovered from Kromdraai B and Swartkrans
Member 1. The black (0-25%), grey (25-75%) and white (75-100%) polygons show the proportion of C, species among

grasses in South Africa (redrawn from Vogel ez al. 1978).

Ratios of stable carbon isotopes (>C/'?C) distinguish
plants that use different photosynthetic pathways. Plants
that have carbon-concentrating, or double carboxylation,
mechanisms have advantages in warm, highly xeric and/or
seasonal environments (Keeley & Rundel 2003). Some
plants segregate carboxylation steps in time (CAM
plants), while others segregate them in space with specific
tissues (C, plants; Keeley & Rundel 2003). These
mechanisms lead to different isotope compositions relative
to plants that use a single carboxylation pathway (Cs;
plants; Ehleringer & Rundel 1989). Ratios of >C/**C are
maintained in the tissues of animals that consume these
plants or the animals that eat these primary consumers
(Koch 1998). Accordingly, an isotopic analysis of
consumer tissues can reveal the types of primary
production supporting a food web. Consumption of C;
plants is indicated by relatively low 13C/12C ratios,
whereas that of C, plants is indicated by relatively high
13C/*2C ratios. CAM plants tend to have intermediate
values, but in many environments they are indistinguish-
able from C,4 plants (Keeley & Rundel 2003).

Additionally, ratios of oxygen isotopes (*30/'°0) are
diagnostic of certain dietary characteristics and environ-
mental conditions (Koch 1998). For instance, oxygen in
the bioapatite of bones and teeth is derived from body
water; oxygen in the body water of terrestrial animals is
supplied chiefly by oxygen in food or drinking water.
Consequently, the factors that alter the oxygen isotope
composition of ingested water can influence the '20/!°0O
ratios of bioapatite. For instance, the oxygen isotope
composition of meteoric water (water that is derived from
the atmosphere) is positively correlated with annual and
seasonal temperatures; the isotopic values of surface water
are increased by preferential loss of '°0O during eva-
poration. The water in plant roots and stems is similar to
the source water, whereas that in leaves may be
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substantially enriched in '®0 due to evapotranspiration.
As a result, the changes in '®0/'°O ratios in consumers
may indicate changes in diet, although temporal or spatial
variation of these ratios due to climate shifts often eclipses
suspected dietary signals.

In tandem, the analysis of stable carbon and oxygen
isotopes can reveal important aspects of an organism’s
feeding ecology (Koch er al. 1994), and comparative
studies of modern and fossil taxa may yield insight into the
diet of extinct animals. Here, we report on the isotopic
ecology of modern and Plio—Pleistocene mole rats in order
to inform hypotheses on the diet of hominin species.
A referential model based on mole rats is advantageous for
three reasons. First, it can falsify or strengthen the
hypothesis that '>C-enriched isotope values are associated
with a diet of USOs. Second, it can determine whether
13C-enriched plants with USOs were temporally and
spatially available to A. africanus and P robustus. Third, a
comparison of modern mole-rat dietary proclivities and
stable isotope ratios may signify which types of USO, if
any, were plausible food items for hominins.

2. MATERIAL AND METHODS

(a) Sample provenience and preparation

We analysed bone apatite from the mandibular ramus of five
South African mole-rat taxa, two of which are different
subspecies (figure 1). The species were chosen for their
geographical and dietary breadth; each relies on USOs to a
different extent (table 1). We also analysed enamel and bone
apatite from the incisors and dentary, respectively, of
Cryptomys spp. recovered from Kromdraai B and Swartkrans
Member 1 (ca 1.9-1.7 Myr ago; Vrba 1985). The specimens,
collectively catalogued as JY001-JY003, are housed in the
Transvaal Museum, Pretoria, South Africa (n=23). We used
a precision dental drill to collect approximately 5 mg apatite.
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Figure 2. (a) Modern mole rats versus Plio—Pleistocene hominins: the 6'>C and 620 values of modern mole-rat tooth enamel
(data available in table 1 in the electronic supplementary material) plotted with values reported for A. africanus and P robustus
(Sponheimer ez al. 20054). (b) The 6*>C and 6'80 values of Plio—Pleistocene Cryptomys spp. bone and tooth enamel plotted with

the values reported for A. africanus and P robustus.

The samples were ground with an agate mortar and pestle,
washed in 2-3% NaOCI and soaked in 1 M acetic acid with
calcium acetate buffer (pH 5.2) to remove diagenetic
carbonates. Each sample was washed, dried and weighed to
approximately 1.5 mg.

(b) Analytical procedure

We analysed samples using a Micromass Optima dual inlet
mass spectrometer located in the Departments of Earth and
Planetary Sciences and Ocean Sciences, University of
California, Santa Cruz. Isotope ratios for C and O are
presented as 6 values, where 6=1000((Rsample/Rstandara) — 1)
and R=cither >C/*?C or '80/'°0. Reference standards are
Vienna PeeDee belemnite for carbon and standard mean
oceanic water for oxygen. Units are expressed as parts per
thousand (%o).

To compare the modern isotopic data with those from Plio—
Pleistocene specimens, carbon isotope values were corrected for
the global decrease in the '>C content of atmospheric CO, due
largely to fossil fuel burning over the last 150 years (the Suess
effect; Idermihle er al. 1999). Based on ice core records
(Francey et al. 1999), we applied a —1.2%0 correction to all
Plio—Pleistocene samples (Leuenberger ez al. 1992; table 1 in
the electronic supplementary material).

(c) Statistical analyses

Statistical tests were performed with JMP v. 5.0.1 for
Macintosh. When possible, analysis of variance was used to
assess differences in carbon and oxygen isotope composition
between species. Because some data violated the assumptions
of parametric statistical analysis, non-parametric Wilcoxon Z
(two-sample) and Kruskal-Wallis x*> (multiple comparison)
tests were used when necessary; further comparisons of
significance were investigated with the Tukey HSD post hoc
test. Orthogonal regression was used to assess correlations
between the 6'80 values of mole rats against modelled 6'%0
values of regional meteoric precipitation using the ‘OIPC:
online isotopes in precipitation calculator’ of Bowen (2006)
and mean annual precipitation (figures 1 and 2 in the
electronic supplementary material).
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3. RESULTS

We analysed four species and two subspecies of modern
mole rats (figure 1). The 6'>C values varied significantly
along the C; to Cy/CAM-vegetative axis (Kruskal-Wallis
2= 36.86; p<0.0001; figure 2a). Three species (Crypromys
damarensis, Cryptomys hottentotus pretoriae and Georychus
capensis) had isotopic values indicative of a Cs-based diet.
Two species (Bathyergus suillus and Crypromys hottentotus
natalensis) showed considerable variation and had less
negative 6'>C values (Tukey HSD Q=2.87; p<0.05).
The 6'80 values for all modern mole rats (except B. suillus)
were similar, ranging from 27 to 31%o0 (Kruskal-Wallis
x2=4.80; p=0.19; figure 2a). Bathyergus suillus had 6'30
values significantly less positive than other species (Tukey
HSD Q=2.87; p<0.05).

The 6'3C values of enamel (#=3) and bone apatite
(n=23) from Plio—Pleistocene Crypromys spp. differed
(Wilcoxon Z=—2.65; p=0.008; figure 2b), indicating
post-mortem alteration of the bone apatite, which is a
well-known effect at these sites (Lee-Thorp & van der
Merwe 1987; Lee-Thorp & Sponheimer 2003). The 6'20
values of Plio—Pleistocene Crypromys spp. bone apatite
and enamel apatite were similar statistically (Wilcoxon
Z=0.00; p=1.00), suggesting little or no post-mortem
alteration of oxygen ratios in bone apatite. The isotopic
composition of the enamel apatite indicates a diet
influenced by either CAM or C4 plants, similar to that
of modern C. h. natalensis. Oxygen isotope ¢ values of
Plio—Pleistocene Cryptomys spp. were lower than those for
all modern populations (F; 64=31.32; p<0.0001), except
B. suillus (Wilcoxon Z=1.62; p=0.11).

Despite spatial and temporal differences, the 6'>C and
680 values of modern C. k. natalensis did not differ from
those reported for A. africanus and P robustus (6">C values:
Wilcoxon Z=—0.34; p=0.73; 6180 values: Wilcoxon
Z=-—0.30; p=0.77; figure 2a). Although a robust
statistical analysis of Plio—Pleistocene Cryptomys spp.
enamel apatite is precluded on the basis of limited samples
(n=3), a non-parametric test revealed overlapping 6'>C
and 6'30 values with those of A. africanus (6*>C: Wilcoxon
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Z=—0.91; p=0.36; 6'30: Wilcoxon Z= —1.82; p=0.07;
figure 2b).

4. DISCUSSION

The man who has nothing to boast of but his illustrious
ancestry is like the potato—the best part under ground.
Thomas Overbury—Characters (1613)

Three conclusions are evident from this study. First,
the 6'>C values of modern mole rats evince a high degree
of variance along the C; to C,/CAM-vegetative axis.
Second, relatively high 6'>C values exist in Cryptomys spp.
specimens recovered from hominin-bearing deposits.
Third, the hypothesis that the diet of A. africanus and
P robustus included USOs to some extent retains certain
plausibility on the basis of comparative isotopic ecology.

(a) The isotopic ecology of mole rats

The 6'80 values of mole rats showed little systematic
variation. We assessed whether this variation can be
explained by modelled 6'®0 variation in meteoric water
across Africa (Bowen 2006) or by mean annual rainfall.
We found a negative correlation between the 6'20 values
of mole rats and meteoric water (r= —0.47; figure 1 in the
electronic supplementary material), which suggests that
mole rats may obtain their water from plants. A negative
correlation between mole-rat values and regional mean
annual rainfall (r= —0.43; figure 2 in the electronic
supplementary material) is consistent with this suggestion,
as environmental moisture influences 6'%0 variability in
plants. The 6*80 values of mole rats therefore appear to be
influenced most strongly by environmental moisture
levels, as mediated by the evaporative effects on plant
waters, rather than the 6'®0 values of meteoric water
itself. A similar effect of moisture level on the 6*20 values
of herbivores has been detected previously (Ayliffe &
Chivas 1990; Levin ez al. 2006).

Our analysis of 6'>C values in mole-rat tissues permits
increased dietary resolution among populations. As many
as three species of mole rat live in the same habitat
(Lovegrove & Jarvis 1986), hence niche partitioning is
expected. A reliance on USOs does vary between species
(table 1), and some species, such as B. suillus, consume
aboveground resources. The relatively '?>C-enriched
values of B. suillus are consistent with a previous report
based on bone collagen (Sealy & van der Merwe 1986) and
with observations of foraging behaviour. The diet of
B. swillus is nearly 60% Cynodon dactylon, a C4 grass, or
more variably composed of stems and leaves (Reichman &
Jarvis 1989; Bennett & Jarvis 1995). The 6'>C values of
C. damarensis and C. h. pretoriae are also consistent with
previous reports of dietary specialization; they consume
the corms and bulbs of C; plants (table 1) despite living in
an environment where most grass species are C, (figure 1).
In contrast, C. h. natalensis—which also relies on bulbs,
corms and grass rhizomes in a C4-dominated system—has
elevated 6'>C values. Specimens of B. suillus and G. capensis
co-occur along the southwestern Cape, but they have very
different 6'>C wvalues, indicating divergent feeding
strategies. This analysis reveals that the mere presence of
mole rats in a C4 ecosystem cannot predict the availability
of C, USOs (cf. Laden & Wrangham 2005). Additionally,
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mole rats that live in the same habitat can display distinctly
different isotopic signatures.

The genus Cryptomys has been a member of the
southern African ecosystem for ca 17 Myr ago (Faulkes
et al. 2004). Based on the retention of specialized
morphological characteristics known to correspond with
a diet of USOs, such food items were likely available for a
comparable period. In fact, consumption of C4 resources
has been documented in non-USO specialist rodents from
Late Pliocene South African deposits (Hopley ez al. 2006).
Our analysis of Cryptomys from Kromdraai B and
Swartkrans Member 1 demonstrates that it consumed
C4 or CAM foods 1.9-1.7 Myr ago. This result suggests
that the USOs of C4 or CAM plants—bulbs and corms in
particular—were available to hominins recovered from the
same localities, and thus could have contributed to the
elevated 6'>C values of A. africanus and P robustus.

(b) USOs and the C; conundrum

Uncertainty exists as to whether C, USOs existed in
quantities sufficient to result in the elevated 6'>C values of
A. africanus and B robustus. This uncertainty stems from
differing opinions on the habitats available to foraging
hominins. Peters & Vogel (2005) observed that edible C4
plants are typically restricted to marshes, wetlands and
disturbed ground, and that environmental models avail-
able for early South African hominin sites do not indicate
such habitats. Yet habitat models based on mammalian
faunal assemblages suggest a moist grassland charac-
terized by trees, streams and rivers (Reed 1997; Avery
2001), and recent theoretical considerations have
suggested that wet river margins and associated habitats
were critical to hominin origins (Conklin-Brittain ez al.
2002; Wrangham 2005). Such environments tend to be
rich in USOs (Copeland 2004); furthermore, CAM plants
(which may have 6'>C values similar to C,4 plants) occur
across the African habitats regardless of surface moisture.
CAM plants range from forests and edaphic grasslands
to semiarid savannahs and desert environments, and
frequently have USOs (Manning ez al. 2002). Importantly,
chimpanzees living in relatively dry habitats consume little
or no C, plant food (Schoeninger ez al. 1999; Sponheimer
et al. 2006a), which limits to some extent the value of
modelling hominin diets on the foraging behaviour of
chimpanzees in savannah-like environments.

Other chemical analyses of food webs in Africa bear on
the USO question. Sr/Ca ratios may indicate consumption
of USOs because underground plant tissues are thought to
have unique Sr/Ca patterns (Sillen ez al. 1995; Sponheimer
et al. 2005b). An analysis of Sr/Ba ratios revealed relatively
high values in Crypromys hottentotus when compared with
other fauna in South Africa (Sponheimer & Lee-Thorp
2006). Although promising, more research and larger
sample sizes are needed to better understand how Sr/Ca
and Sr/Ba ratios fractionate within modern ecosystems,
particularly among the USO-bearing plant groups and
the animals known to consume them. Isotopic sub-
sampling of the dental perikymata of P robustus has
revealed highly variable 6'C values, which has been
interpreted as evidence for seasonal foraging on very
different foods (Sponheimer ez al. 2006b). Alternatively,
because much of this variation is within the range
exhibited by USO specialists, this result may instead
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indicate foraging on different proportions of seasonally
abundant USO-bearing plants.

(¢) Converging lines of evidence for USO usage

The behaviour of living primates suggests that hominins
probably selected foods on the basis of specific mechanical
and nutritional properties. Mechanically, the craniodental
morphology and the microwear of early hominin species
indicate a diet characterized frequently or occasionally by
relatively hard, gritty foods (Teaford ez al. 2002). Some
USOs would appear to fit these criteria, yet relevant
studies are few. When chacma baboons (Papio ursinus)
consume USOs during the dry season, their molar
microwear bears a resemblance to the extensive pitting
observed on specimens of P robustus (Daegling & Grine
1999). This study suggests that USOs are abrasive;
however, an analysis of the mechanical characteristics of
putative hominin foods, particularly corms and bulbs, may
yield further insights. For instance, the tubers of Kirkia
wilmsii are two to nine times more puncture resistant than
the bulbs of Cyperus usitatus (Peters & Maguire 1981). In
this regard, Stahl (1984, p. 156) may have been prescient:
‘it would seem important to distinguish types of storage
organs in discussing their potential as food sources for
early hominids’.

Compellingly, USOs also vary in their nutritional
properties. Bulbs and corms are a relatively rich source
of starch carbohydrates when compared with tubers
(Orthen 2001; Schoeninger er al. 2001), and Conklin-
Brittain ez al. (2002) suggested that a dietary shift to USOs
among australopith-grade hominins led to a reduction in
fibre intake and an overall improvement in nutritional
quality. In fact, the fibre content of wild USOs in the diet
of modern Cryptomys is much lower than that of fruit and
pith in the diet of chimpanzees (Bennett & Jarvis 1995).
Typically, a fibrous diet favours a digestive system capable
of caeco-colic fermentation (Alexander 1993), which is
characteristic of hominoid primates (Lambert 1998). A
mole-rat species with a similar isotopic composition to
hominins, Bathyergus suillus, is a caeco-colic fermenting
herbivore, rather than a caecal fermenter, as is the case in
most rodent species (Kotze er al. 2006). Such an
anatomical resemblance suggests that the digestive
kinetics of the hominoid gut would not preclude an
adaptive shift towards the consumption of USOs.

In conclusion, our isotopic analysis of modern and
Plio-Pleistocene mole rats reveals the inclusion of '*>C-
enriched foods in their diets. Since mole rats are USO
specialists, this enriched isotopic signature is certain to be
derived to a large extent from the USO-bearing plants.
Accordingly, the consumption of USOs by early hominins
cannot be refuted on the basis of 6'>C values, although it is
apparent that other food objects could have contributed to
the >C-enriched values of hominin teeth, such as termites
and the flesh of grazing animals (Backwell & d’Errico
2001; Peters & Vogel 2005; Sponheimer ez al. 2005b), or,
perhaps, the flesh of mole rats themselves (Henshilwood
1997). Finally, although we have focused on C, USOs, it is
important to emphasize that CAM plants may also have
contributed to the >C-enriched values of A. africanus and
PR robustus. Many South African CAM plants are
geophytic; indeed, 20% of the Cape flora is characterized
as such (Proches et al. 2006). In some areas, geophytic
plants represent 40% of the total flora (Snijman & Perry
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1987; Manning et al. 2002). Perhaps not surprisingly,
accumulations of cormous tunics are widespread in the
Early Holocene archaeological record of the western Cape
(Deacon 1976), indicating the importance of USOs, or
corms and bulbs specifically, as an important food
resource. Future directions will include a study of 6'>C
values among geophytic species and an analysis of USO
mechanical characteristics.
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